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Background: Polyvinyl chloride (PVC) microplastics (MPs) are among the most hazardous types of MPs 
due to their widespread use and environmental persistence. The increasing production and degradation of 
PVC MPs pose significant concerns about their adverse effects on living organisms, particularly through 
inhalation exposure. 

Methods: The present study investigated the pulmonary toxicity of PVC MPs in rat models following 28 
days of subacute inhalation exposure at a dose of 15 mg/m³. Pulmonary inflammation and tissue 
morphology were evaluated using immunofluorescence staining for p65 NF-κB and hematoxylin and eosin 
(H&E) staining. Oxidative stress was assessed by measuring malondialdehyde (MDA) levels as a marker.  

Results: The results demonstrated that subacute inhalation exposure to PVC MPs significantly increased 
MDA levels (p<0.05), indicating heightened oxidative stress. Immunofluorescence analysis revealed 
elevated p65 NF-κB expression (p<0.05), confirming the activation of the inflammatory pathway. 
Histopathological evaluation demonstrated severe pulmonary tissue damage, including widespread 
inflammation and structural disruption (p<0.05).  

Conclusion: The present work highlights that subacute inhalation of PVC MPs induces pulmonary toxicity 
through mechanisms involving oxidative stress and activation of the NF-κB signaling pathway. 
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Introduction
Plastic is a synthetic organic polymer formed through 

the polymerization of monomer units derived from oil or 
gas. This material has become an essential component in 
various industries worldwide due to its versatility and 
widespread applications [1, 2]. Over the years, global 
plastic production has surged significantly, reaching 360 
million tons in 2018 compared to just 1.5 million tons in 
1950. An estimated 4.8 to 12.7 million tons of this 
production ultimately find their way into the oceans 
through a variety of routes. By 2050, it is estimated that 
the annual production of plastics will rise to 2,000 million 
tons [3]. Additionally, the rapid increase in plastic 
production from approximately 1.7 tons annually in the 
1950s to over 350 million tons in the 21st century 
highlights its growing importance and challenges [4]. 
Recent projections suggest global plastic production 

could reach 500 million tons by 2025 [5]. 
Polyvinyl chloride (PVC) is among the most 

commonly used synthetic plastics in a range of industrial 
applications, including packaging, construction, and 
medical devices [6]. Concerns over the effects of PVC's 
byproducts on the environment and human health, 
especially microplastics (MPs), have been raised by the 
increasing manufacturing and use of the material. The 
MPs are primarily formed through environmental 
processes such as weathering, mechanical abrasion, and 
photodegradation of plastic waste [7, 8]. The size of 
these particles varies from 1 μm to 5 mm, and they can 
be either regularly or irregularly shaped [9]. 

In the atmosphere, MPs can become airborne and 
enter the human body through inhalation, posing 
significant health risks [10]. Atmospheric MPs have 
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been detected globally and are often transported in various 
shapes and forms. A considerable proportion of airborne 
MPs falls within the respirable size range of 0.1-1 μm 
aerodynamic diameter [11]. Humans are estimated to 
inhale approximately 0-3.0×10⁷ MP/NP particles per year 
via aerosols [12]. Studies analyzing atmospheric MPs/NPs 
in residential, workplace, and public transportation 
environments reveal that most particles are smaller than 
100 μm, presenting a potential inhalation hazard [13]. 
There are even studies that have shown the biodistribution 
of inhaled micro-nano plastics in the human body. One 
study states that inhaled MPs can accumulate in the 
human respiratory system, where their biodistribution 
may trigger inflammatory, fibrotic, and carcinogenic 
responses, highlighting the urgent need to assess their 
potential health impacts [14]. 

Despite the growing awareness of the health risks 
associated with microplastic exposure, the specific effects 
on lung health remain inadequately understood. The lungs 
are particularly vulnerable to inhaled particles, and exposure 
to airborne MPs could lead to various toxicological 
responses, such as inflammation, oxidative stress, and tissue 
damage [15]. While previous research has pointed out the 
potential harmful effects of MPs on several organs, there 
is limited focus on their impact on the respiratory system, 
especially concerning MPs derived from PVC. Therefore, 
it is essential to investigate the pulmonary toxicity of PVC 
MPs to better understand their broader health implications. 
The present study examines the lung toxicity caused by 
subacute exposure to PVC MPs in rat models. By 
evaluating inflammation, oxidative damage, and other 
indicators of lung injury, the aim was to clarify the 
mechanisms behind microplastic-induced pulmonary 
toxicity. 

 

Materials and Methods 
Experimental design 

The present study followed an experimental design, 
incorporating both a randomized post-test-only control 
group design and a true experimental design. The authors 
compared MDA levels, p65 NF-κB expression, and 
histopathological analysis of the lungs from a control 
group and a group of rats exposed to PVC MPs through 
inhalation. The whole experimental protocol received 
approval from the Animal Care and Use Committee of 
Universitas Brawijaya, Indonesia (Approval No. 
81/EC/KEPK-S2/04/2025). 

 
Experimental animals  

A total of 11 female Wistar white rats (Rattus 
norvegicus) were obtained from the Pharmacology 
Laboratory, Faculty of Medicine, Universitas Brawijaya, 
Indonesia. The females were randomly allocated to either 
a control group (n=5) or a treatment group exposed to 
PVC microparticles (n=6). For this study, female rats were 

chosen because prior research suggests that they are 
more sensitive to toxicological exposures, making 
them a more accurate model for identifying treatment-
related side effects [16]. The healthy rats utilized in the 
study were 12 to 15 weeks old, weighed 150-200 
grams, and went through a regular estrous cycle. The 
estrous cycle stage was monitored daily using visual 
assessment and confirmed by vaginal smear cytology. 
All procedures for rat care during the study adhered to 
the research protocol and included measures to 
minimize the discomfort of the experimental animals. 

 
Exposure to PVC microplastics per inhalation  

The whole-body inhalation exposure method was 
carried out following the research of Trembley et al. 
(2022) [17], with modifications to the duration of sub-
acute administration. Briefly, female rats in the estrous 
phase were placed in a 60×60×60 cm3 inhalation box 
and exposed to technical grade PVC microplastic (CV. 
Subur Kimia Jaya®), which was exhaled via a blower 
for 4 hours per day for 28 days [18]. The PVC MP was 
examined under a stereo microscope (Nikon® 
SMZ1500) with a camera attached (Onglai Fixtool 
51MP®). The microplastic size used in this study was 
1,061±9,09 mm, and 92% of particles had a size below 
600 mm. According to the Occupational Safety and 
Health Administration (OSHA) recommendations, a 
dosage of 15 mg/m3 of PVC microplastic was used 
[15]. After 28 days of treatment, the rats were 
euthanized using deep anesthesia, and their blood was 
taken from the heart for examination. 

 
Malondialdehyde analysis 

The MDA concentration in this study was determined 
in accordance with the BIOXYTECH MDA-586® 
manufacturer's protocol. A total of 100 mg of lung tissue 
was finely ground in 1 mL of PBS solution and placed 
in a microtube. The sample was centrifuged at 14,000 
rpm for 15 minutes to separate the clear supernatant. 
The supernatant was transferred to a new microtube 
and kept at 20°C. Next, 250 μL of the supernatant was 
pipetted into a test tube, followed by the addition of 500 
μL of 40% TCA solution, 1000 μL of 1% TBA 
solution, and 100 μL of 1N HCL. The mixture was 
vortexed to ensure homogeneity. The sample was 
incubated at 90-95°C for 20 minutes, allowed to cool to 
room temperature, and then sealed with parafilm. 
Afterward, the supernatant was centrifuged at 4000 rpm 
for 10 minutes. A total of 1500 μL of the supernatant 
was collected and combined with 1250 dL of water. 
The MDA levels in the lungs were measured using a 
UV-Vis spectrophotometer at a wavelength (λ) of 580 
nm. 

 
Protein expression of p65 NF-κB  
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For protein expression, immunofluorescence staining 
using NF-κB p65 Antibody (sc-8008, Santa Cruz 
Biotechnology) and DAPI (Santa Cruz Biotechnology) 
was employed. The sections were first incubated with 1% 
BSA for 30 minutes at room temperature. They were then 
incubated with the primary antibody overnight at 4°C, 
followed by washing with BSA. Afterward, the sections 
were incubated with the secondary antibody for 30 
minutes. Then, they were incubated with DAPI for 30 
minutes, mounted on coverslips, and the immuno-
fluorescence staining was evaluated with an Olympus 
BX51 microscope. The antibody intensity was measured 
using the ImageJ software. 

 
Histopathological studies 

All rats were euthanized, and the lung tissues of all 
groups were separated for histological studies. The organ 
was washed in normal saline, fixed in 10% buffer 
formalin, and dehydrated with alcohol. The organs were 
fixed and sectioned into approximately 5 μm thick slices, 
then stained with hematoxylin and eosin (H&E). The 
histopathology profile was observed under a light 
microscope. As for the assessed lung tissue, there is a 
degree of infiltration of inflammatory cells. 

 

Statistical analysis 
The results of all parameters tested were evaluated by 

statistical analysis using SPSS (version 20) for 
Windows, Image J, and GraphPad Prism (version 
10.2.3) software (GraphPad Co., Ltd., San Diego, CA, 
USA). The data were analyzed using the Mann-
Whitney U test and the independent samples t-test, with 
a significance level set at 0.05 (p-value < 0.05). 

 

Results  
Polyvinyl chloride microplastic characterisation 

In this study, a total of 459 PVC particles were used, 
characterized by two main properties: size and shape. 
The size of the PVC particles varied, ranging from 
<100 μm to >1000 μm, with the most dominant group 
being between 100 μm and 200 μm. The average size 
of all the samples was 1065.751 ± 9090.988 μm. In 
addition to size, the samples were categorized into four 
shapes: filament, fragment, granule, and pellet. The 
number of particles for each shape was 18, 376, 17, and 
48, respectively. The most dominant shape was the 
fragment, with a total of 376 particles (Figure 1).  

 

 

 
Figure 1. Types and shapes of microplastics. 

 
Pulmonary MDA concentration 

The MDA levels in the lungs in this study were 
measured using a spectrophotometer with an absorbance 
of 580 nm. (Figure 2) compares the average MDA 

concentration levels in the lung organs between the 
control and PVC groups. The PVC group has a higher 
average MDA concentration of 0.197866921 ng/mL 
than the control group, which is 0.000875517 ng/mL. 
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The Shapiro-Wilk normality test displayed normal results 
for the control group (p=0.706) and the PVC group 
(p=0.849). The Levene’s homogeneity test indicated non-
homogeneous results (p=0.008). Then, the Mann-Whitney 

test was selected, and a value was obtained (p=0.002). 
It can be determined that a significant difference in 
MDA levels exists between the observation groups. 

 

 
Figure 2. Effects of polyvinyl chloride exposure on MDA tissue levels in PVC-induced lung damage in Wistar rats. The data are presented as means ± SD 

(Malondialdehyde: MDA and Polyvinyl Chloride: PVC). 
 
PVC exposure and its impact on p65 NF-κB expression 

Immunofluorescence images of lung tissue were 
obtained for both the control and PVC groups. Each group 
was divided into three images consisting of DAPI, p65 
NF-κB, and a merge of the two (Figure 3A). Next, the 
intensity of the FITC green light was measured in five 
fields of view for each sample and averaged. The results 
indicated that the expression of p65 NF-κB in the PVC 
group was higher, with a value of 110,228,199 iu, 
compared to the control group’s 63,658,687.5 iu (Figure 
3B). The measured intensity of p65 NF-κB expression 

was then analyzed using the SPSS (version 25) 
software. The Shapiro-Wilk normality test indicated 
normal distribution for the control group (p=0.809) and 
the PVC group (p=0.301). The Levene’s homogeneity 
test showed homogeneity (p=0.637). Subsequently, an 
independent T-test was conducted, yielding a p-value 
of 0.027. Although some overlap in error bars was 
observed, indicative of biological variation in the 
inflammatory response, the statistical analysis confirmed 
a significant difference between the groups. It can be 
determined that a significant difference in p65 NF-κB 
expression exists between the observed groups. 

 

 

Figure 3A. Histopathology of rat lung (H&E stain, × 20). 
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Figure 3B. Effects of polyvinyl chloride exposure on p65 NF-κB inflammatory expression in the lung tissue of Wistar rats. The data are presented as means ± SD. 
 

3.4. Pulmonary histopathological examination 
The histopathology of lung tissue between the control 

group and the PVC group is shown in Figure 4A. The PVC 
group experienced a more extensive inflammatory process 
compared to the control group, as indicated by the thickening 
of the alveolar epithelium and the widespread distribution of 
inflammatory cells. The number of inflammatory cell 
infiltrates in the PVC group was significantly higher, with 
3,406 cells compared to the control group’s 1,109.34 cells 

(Figure 4B). The Shapiro-Wilk normality test revealed 
normal distributions for the control group (p=0.487) 
and the PVC group (p=0.700). The Levene’s 
homogeneity test indicated homogeneity (p=0.936). 
Subsequently, an independent T-test was performed, 
yielding a p-value of 0.000. It can be determined that 
there is a significant difference in the level of 
inflammatory cell infiltration between the observed 
groups. 

 

 
Figure 4A. Immunofluorescence results of p65 NF-κB expression in lung tissue (IF, × 40). 



October 2025, Volume 19, Number 4 
 

232                                                                  Aditya MR, et al. PVC Microplastics Induced Pulmonary Toxicity and NF-κB Activation. J Toxicol. 2025; 19(4): 227-234 
 
 

 

 

 
Figure 4B. Effects of polyvinyl chloride exposure on inflammatory cell infiltration in the lung tissue of Wistar rats. The data are presented as means ± SD. 

 

Discussion 

In many toxicological studies involving the inhalation 
route, the lungs are one of the primary organs analyzed. 
As a vital organ in the human respiratory system, the lungs 
have various essential functions, including gas exchange, 
blood pH regulation, air filtration, and moisture control 
[19]. The lungs also serve as a "port of entry" for various 
agents from the external environment into the body, 
including MPs like PVC [20]. The present study 
demonstrates the significant pulmonary toxicity induced 
by subacute inhalation exposure to PVC MPs in rat 
models. The findings are marked by increased MDA 
levels, upregulation of p65 NF-κB expression, and 
pronounced histopathological changes in lung tissue.  

The elevated MDA levels observed in this study 
indicate heightened oxidative stress, as MDA is a key lipid 
peroxidation biomarker and is commonly used to assess 
cellular damage caused by oxidative stress [21]. The 
MDA, a byproduct of lipid peroxidation, forms when 
reactive oxygen species (ROS) target polyunsaturated 
fatty acids in cell membranes, causing cellular damage 
and dysfunction. The exposure to PVC MPs likely triggers 
ROS production, either through direct interactions with 
lung epithelial cells or via the release of toxic additives, 
exacerbating oxidative stress [22]. This oxidative imbalance 
disrupts cellular homeostasis, causing membrane damage, 
protein oxidation, and DNA damage, which in turn catalyzes 
inflammatory processes. As inflammation progresses, it 
amplifies tissue injury, contributing to the impairment of 
lung function [23]. The elevated MDA levels in response 
to PVC exposure reflect the extent of this oxidative 
damage and serve as a clear indication of the harmful 
effects of MPs on lung tissue. Similarly, a study by Kang 
et al. (2024) [24] reported that subchronic exposure to 
polystyrene MPs via intratracheal instillation at a dose of 
15 mg/kg resulted in elevated levels of MDA, a marker of 
lipid peroxidation, in rats, which further demonstrated the 
role of microplastic exposure in driving oxidative stress 
and related pathophysiological effects. 

The NF-κB, as a transcription factor, regulates the 

expression of pro-inflammatory cytokines and 
chemokines, playing a key role in immune cell 
recruitment and the persistence of inflammation in the 
lung. Its upregulation suggests that microplastic 
exposure serves as a potent inflammatory stimulus, 
exacerbating pulmonary injury. In mammals, the NF-κB 
transcription factor family consists of five members: p65 
(RelA), RelB, Rel, NF-κB1 (p105/p50), and NF-κB2 
(p100/p52). Among these, p65 often forms a dimer with 
p50, creating the p65/p50 complex—the most common 
and transcriptionally active form of NF-κB. This dimer 
plays a central role in regulating inflammatory and 
immune responses [25, 26]. Furthermore, p65 features a 
highly active transactivation domain at its C-terminal, 
enabling efficient induction of target gene expression 
upon activation [27]. The p65/p50 transcription factor is 
also recognized as the primary mediator of the canonical 
NF-κB pathway, which can be activated by oxidative 
stress [28, 29]. The significant increase in p65 NF-κB 
expression observed in this context reflects the activation 
of a critical inflammatory pathway, further linking 
oxidative stress and inflammation to tissue damage. 

Our findings demonstrate that exposure to PVC MPs 
induces a significant increase in the expression of the 
p65 NF-κB protein, highlighting the activation of a 
critical inflammatory signaling pathway, which aligns 
with previous research by Cao et al. (2023) [30] that 
revealed polystyrene MPs cause lung damage primarily 
through the activation of the NF-κB signaling cascade 
and emphasized that microplastic exposure leads to a 
pronounced upregulation of p65 expression, playing a 
central role in initiating and sustaining pro-inflammatory 
responses. Similarly, Woo et al. (2023) [31] found that 
exposure to smaller-sized polypropylene nanoplastics 
(NPs) induces lung inflammation through a p38-mediated 
NF-κB pathway driven by mitochondrial damage. This 
sustained inflammatory state exacerbates pulmonary 
damage and potentially leads to chronic respiratory 
conditions [32]. These findings underscore the need to 
explore further the mechanisms by which different types 
of MPs activate NF-κB pathways, as PVC and 
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polystyrene MPs appear to induce p65 upregulation directly. 
At the same time, polypropylene NPs involve mitochondrial 
dysfunction and p38 signaling, highlighting the importance 
of understanding the physicochemical properties of MPs, 
such as size, surface charge, and polymer type, in 
determining their inflammatory potential. 

Histopathological examination revealed an increased 
infiltration of parenchymal lung cells in PVC-exposed 
tissues, which is caused by oxidative stress and the 
inflammatory response, which can lead to alterations 
indicating an acute inflammatory response and impaired 
lung function [33]. These alterations indicate an acute 
inflammatory response and impaired lung function, 
raising concerns about the potential for chronic conditions 
such as fibrosis or chronic obstructive pulmonary disease 
(COPD) with prolonged exposure [34]. Additionally, the 
persistent oxidative stress induced by exposure may 
contribute to cellular damage, further promoting 
inflammation and tissue remodeling, which are key 
drivers of chronic lung diseases. 

 

Conclusions 
Subacute exposure to PVC MPs in rat models induces 

significant pulmonary toxicity, characterized by 
inflammatory responses, oxidative stress, and 
histopathological damage. These findings highlight the 
need for greater attention to MPs’ environmental and 
health risks, particularly those derived from frequently 
used materials, such as PVC. Future studies should focus 
on understanding the underlying molecular mechanisms 
of PVC microplastic toxicity and exploring effective 
strategies for mitigating exposure and reducing the 
environmental burden of plastic pollution. 
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