Cyto-architectural Alterations in the Corpuscles of Stannius of
Stinging Catfish Heteropneustes fossilis after Exposure to a Botanical
Pesticide (Nerium indicum)

ManiRam Prasad¹, Abhishek Kumar¹, Sunil Kumar Srivastav¹, Nobuo Suzuki², Ajai Kumar Srivastav*¹

Received: 28.04.2013 Accepted: 01.06.2013

ABSTRACT

Background: This investigation describes the cyto-architectural alterations observed in the corpuscles of Stannius of stinging catfish Heteropneustes fossilis after treatment with a botanical pesticide Nerium indicum.

Methods: Heteropneustes fossilis were subjected to 11.27 and 2.81 mg/L of Nerium indicum leaf extract over short- and long-term exposure periods, respectively. Blood was collected for calcium analysis and corpuscles of Stannius (CS) gland were fixed on 24, 48, 72 and 96 h in the short-term experiment and after 7, 14, 21, and 28 days in the long-term experiment.

Results: Serum calcium levels decreased from 48 h to 96 h. CS remains unaffected till 72 h. After the 96-hour treatment, increased granulation was observed in AF-positive cells. Nuclear volume of these cells exhibited no change throughout the short-term treatment. Slight increases in nuclear volume of AF-negative cells were recorded after 96 h. Nerium indicum caused decreases in serum calcium levels of H. fossilis from day 14 to 28. CS exhibited no alterations up to 14 days of exposure. AF-positive cells of CS depicted increased granulation after 21 days of treatment. Nuclear volume of these cells exhibited a slight decrease from day 21 to 28. Heavy accumulation of AF-positive granules was observed and few degenerating cells were noticed. Nuclear volume of AF-negative cells increased after 21 and 28 days of treatment. Vacuolization and degeneration occurred in certain places.

Conclusion: It is inferred from the present study that the botanical pesticide Nerium indicum induced severe changes in the corpuscles of Stannius of catfish.

Keywords: Botanical Pesticide, Calcium, Corpuscles of Stannius, Heteropneustes Fossilis, Nerium Indicum, Teleost.

INTRODUCTION

Botanical pesticides are phytochemicals that have evolved in plants for defense against phytophagous insects. Although derived from natural sources, botanicals are not necessarily safer or less toxic to non-pest insects, humans, and animals, than synthetically-derived pesticides. In fact, most botanicals cause allergic reactions in people, others are highly toxic to fish and animals, and some may even cause cancer. The use of plant species or their products (green pesticides or botanical pesticides) to control insect pests has been in practice to a limited extent for centuries. Recently interest has renewed in the pest management potential of these natural products. Natural pesticides based on plant extracts, such as rotenone, nicotine, and pyrethrum, have been commonly used for pest control during the earlier half of this century.

Nerium indicum is used as a medicinal plant in India. It is useful for the treatment of menorrhagia, asthma, bronchitis, and inflammation of gums [1]. Extract of herbal teas made of Neirum oleander has been ingested for suicidal or medicinal purposes.
[2,3] and as wood preservative [4]. Nerium is also used as rat poison and insecticide.

Corpuscles of Stannius (CS), which secretes an antihypercalcemic hormone Stanniocalcin, was considered to be unique to fish as they have not been identified in other vertebrates [5-8]. Fontaine [9] first established a correlation between CS and calcium regulation. Several studies have indicated the presence of two-cell types in CS [10-14]. On the other hand, other investigators have noticed only one-cell types in the CS of some teleost [15-17]. In non-piscine vertebrates, presence of functional receptors for STC have been suggested by few investigators on the basis of their studies in which they observed CS extract induced hypocalcemia in snakes [18] and in birds [19]. Stanniocalcin (STC) homologs may also be present in tetrapods [20]. In higher vertebrates, no homologous structure of CS has been present. However, immunocytochemically Stanniocalcin (STC 1 and STC 2) has been identified in the bladder, ovary, alpha cells of pancreas, and kidney of human and rat [20-22]. This study was an attempt to investigate the effects of Nerium indicum leaf extract on the corpuscles of Stannius of a teleost, H. fossilis. To the best of our knowledge, the effects of botanical pesticides on fish CS have not been reported yet.

MATERIALS AND METHODS

Adult stinging freshwater catfish Heteropneustes fossilis (both sexes bodyweight 32-44 g) were collected locally. Healthy fish showing no external signs of injury and disease were selected for experiments and acclimatized to laboratory conditions (under natural photoperiod 11.46-12.18 and temperature 26.74 ± 2.11 °C; pH 7.26 ± 0.09; hardness 167.97 ± 5.69 mg/L as CaCO3; dissolved oxygen 7.85 ± 0.36 mg/L) for 15 days in dechlorinated tap water. The Animal Research Ethical Committee of DDU Gorakhpur University, Gorakhpur, approved the study.

In the present study, Nerium indicum leaf extract was used. Prasad et al. [23] reported the 96-hour LC50 value of Nerium indicum leaf extract (14.0 mg/L for the fish H. fossilis). In short-term exposure, the fish were subjected to 11.27 mg/L of Nerium indicum leaf extract (80% of the 96-hour LC50 value). In long-term exposure, the fish were subjected to 2.81 mg/L (20% of 96 h LC50 value) of Nerium indicum leaf extract. At the same time, a control group was also run for comparison by using the tap water containing ethanol. Fish were kept in groups of 10 in 40 L media. Nerium indicum leaf extract was weight and stock solution (50 mg/ml) was prepared in 100% ethanol. Six fish were sacrificed (anaesthesized with MS 222) on each time interval from control and experimental (Nerium indicum) groups after 24, 48, 72, and 96 h in short-term exposure and after 7, 14, 21, and 28 days in long-term exposure.

Blood samples were collected by sectioning of the caudal peduncle of the fish. The sera were separated by centrifugation at 3500 rpm and analyzed for calcium levels (calcium kit, RFCL Limited, India). After collection of blood samples, the corpuscles of Stannius were fixed in aqueous Bouin’s fluid. Fixed tissues were routinely processed in graded series of alcohols, cleared in xylene, and then embedded in paraffin wax. Serial sections were cut at 6 µm and stained with aldehyde fuchsin (AF) for light microscopic examination (Olympus CH 20i). Photomicrograph were taken with the aid of Olympus E 420 camera.

Nuclear indices (maximal length and maximal width) of corpuscles of Stannius were determined (50 nuclei were measured per specimen; thus, 300 nuclei were measured from six specimens) with the aid of ocular micrometer and then the nuclear volume was calculated as

\[\text{Volume} = \frac{4}{3} \pi ab^2 \]

Where ‘a’ is the major semiaxis and ‘b’ is the minor semiaxis.

All data are presented as the mean ± S.E. of six specimens and student’s t-test was used for the determination of statistical significance. In all studies, the experimental group was compared to its specific time control group. Two-way analysis of variance (ANOVA) was used for multiple group comparisons.
RESULTS

In the short-term experiment, the serum calcium levels of H. fossilis exhibits a decline after 48 h following exposure to Nerium indicum leaf extract. This decrease continues till the end of the experiment (96 h) (Figure 1). Analysis of variance indicated that the levels of serum calcium were significantly different between the groups (between intervals $F = 9.38$, $P<0.0001$; between treatments $F = 55.78$, $P<0.0001$).

![Figure 1. Serum calcium levels of short-term Nerium indicum leaf extract-treated H. fossilis (Values are mean ± S.E. of six specimens.) Asterisk indicates significant differences (P<0.05) from the control group.](image)

In control fish, two cell types- AF-positive and AF-negative- were noticed after aldehyde fuchsin staining (Figure 2).

![Figure 2. Corpuscles of Stannius of control fish exhibiting AF-positive (arrows) and AF-negative cells (broken arrows); AF x 500.](image)

Corpuscles of Stannius remain unaffected till 72 h in Nerium indicum leaf extract-treated H. fossilis. Increased granulation was seen in the AF-positive cells of CS of fish treated for 96 h (Figure 3). The nuclear volume of these cells exhibited no change throughout the short-term treatment. Slight increase in the nuclear volume of AF-negative cells was recorded after 96 h following Nerium indicum leaf extract (Figure 4). Analysis of variance indicated that in the short-term experiment, the nuclear volume of AF-positive cells was not significant (between time intervals $F=0.24$, ns; between treatments $F= 0.17$, ns), whereas for AF-negative cells the values were significant (among time intervals $F = 1.00$, $P<0.403$; between treatment $F = 1.13$, $P<0.294$).

![Figure 3. Corpuscles of Stannius of 96 h Nerium indicum leaf extract-treated fish showing increased granulation (arrows) in AF-positive cells; AF x 500.](image)

![Figure 4. Nuclear volume of AF-negative cells of H. fossilis treated with Nerium indicum leaf extract for short-term. Each value represents mean ± S.E. of six specimens. Asterisk indicates significant differences (P<0.05) from the control group.](image)

In the long-term experiment, Nerium indicum leaf extract provoked a decline in the serum calcium levels of H. fossilis on day 14. The levels progressively declined till the close
of the experiment (28 days) (Fig 5). Analysis of variance indicated that the levels of serum calcium for long-term exposure were significantly different between groups (between intervals $F = 16.46$, $P<0.0001$; between treatment $F = 113.7$, $P<0.0001$).

Figure 5. Serum calcium levels of long-term Nerium indicum leaf extract-treated H. fossilis. Values are mean ± S.E. of six specimens. Asterisk indicates significant differences ($P<0.05$) from the control group.

The corpuscles of Stannius of H. fossilis exhibited no alterations in histological structures up to 14 days of exposure to Nerium indicum leaf extract. AF-positive cells of CS depicted increased granulation after 21 days of treatment (Figure 6). The nuclear volume of these cells exhibited a slight decrease on day 21 (Figure 7). A further decrease in the nuclear volume of AF-positive cells of CS has been noticed following 28 days of exposure to Nerium indicum leaf extract (Figure 7). Heavy accumulation of AF-positive granules was observed (Figure 8) and few degenerating cells were visualized at certain places (Figure 9).

Figure 6. Increased granulation (arrows) in the AF-positive cells of Nerium indicum leaf extract-treated H. fossilis (21 days); AF x 500.

Figure 7. Nuclear volume of AF-positive cells of long-term Nerium indicum leaf extract treated H. fossilis (Each value represents mean ± S.E. of six specimens). Asterisk indicates significant differences ($P<0.05$) from the control group.

Figure 8. Corpuscles of Stannius of fish exposed to Nerium indicum leaf extract for 28 days showing heavy accumulation of secretary granules (arrows) in AF-positive cells; the degenerating AF-positive cells (broken arrow); AF x 500.

Figure 9. Corpuscles of Stannius of H. fossilis exposed to Nerium indicum leaf extract for 28 days showing degeneration (arrows) in AF-positive cells; AF X 500.

An increase in the nuclear volume of AF-negative cells was noticed after 21 and 28
Cyto-architectural Alterations in the …

days following Nerium indicum leaf treatment (Figure 10).

Analysis of variance indicated that in the long-term experiment, the nuclear volumes of AF-positive (between time intervals, \(F=11.98, \ P<0.0001 \); between treatment, \(F=36.23, \ P<0.0001 \)) and AF-negative (between time intervals, \(F=4.57, \ P<0.008 \); between treatment, \(F=14.45, \ P<0.0001 \)) cells were significantly different.

Figure 10. Nuclear volume of AF-negative cells of *H. fossilis* treated with Nerium indicum leaf extract for long-term (Each value represents mean ± S.E. of six specimens.). Asterisk indicates significant differences (\(P<0.05 \)) from the control.

DISCUSSION

In the freshwater catfish, *H. fossilis* Nerium indicum leaf extract treatment caused hypocalcemia. This is in conformity with the findings of earlier studies that had reported decreased blood calcium content after exposing the fish to various toxicants, such as cypermethrin [24-26], aldrin [27], malachite green [28], cadmium [29-32], propoxur [33], formithion [33], lead [34], and deltamethrin [35-36]. However, no effect had been observed in blood calcium content of DDT-treated flounders *Platichthys flesus* [37], cadmium-exposed *Oncorhynchus niloticus* [38], and bifenthrin-treated rainbow trout *Oncorhynchus mykiss* [39]. Contrary to the findings of the present study, few studies have indicated elevated calcium levels of fish after exposure to pesticides [40-44].

Increased accumulation of secretory granules and a decrease in nuclear volume of AF-positive cells had been noticed in CS of Nerium indicum leaf extract treated fish. Accumulation of secretory granules and decreased nuclear volume of AF-positive cells in response to exposure of fish to toxicants have been recorded earlier by few studies [45-47]. CS has been reported to regulate branchial calcium uptake in the fish through secretion of AF-positive cells (i.e. stanniocalcin, a hypocalcemic hormone) [6, 7, 10, 48-53]. Exposure to Nerium indicum leaf extract caused increased granulation in the AF-positive cells, which can be explained on account of inhibition of the hormonal release and continued biosynthesis of stanniocalcin. The present study derives support from the earlier studies that had also noticed accumulation of AF-positive granules in CS in response to experimentally-induced hypocalcemia in fishes kept in ambient acalcic freshwater [12, 52]. Calcitonin cells of mammals (responsible for the secretion of a hypocalcemic factor-CT) have also been reported to accumulate secretory granules in response to experimentally-induced hypocalcemia [54-58].

CONCLUSION

It can be concluded that Nerium indicum can severely affect the physiology of calcium homeostasis in fishes as alterations in serum calcium content as well as cytological changes in corpuscles of Stannius of the freshwater fish *H. fossilis* were seen. Calcium is important for several physiological processes, including reproduction. CS is responsible for calcium influx; hence, any alteration in calcium and CS causes physiological disturbances which might severely affect the normal vital functions, growth rate, and survival in nature. Hence, the botanical pesticides should be used with caution near fish inhabiting water reservoirs.

ACKNOWLEDGMENTS

The authors are thankful to research colleagues who have helped conduct the experiment.

REFERENCES

46. Mishra D, Srivastav S, Suzuki N, Srivastav A. Corpuscles of Stannius of a freshwater teleost,

