Evaluation of some Enzymatic Changes in the Liver and Kidney of Rats Following Exposure to Sublethal Concentration of Potassium Cyanide

Hasan Baghshani*, Vahide Ghodsi

ABSTRACT

Background: Besides acute lethal cyanide poisoning, its chronic intoxication may also produce some pathologic effects on different tissues that precedes alterations in biochemical parameters. The present study was aimed to evaluate the effects of sublethal cyanide exposure on some tissue enzyme activities in liver and kidney of rats.

Methods: Twelve male rats were divided into two groups as follows: Group 1 rats served as control. Rats in group 2 received water containing 200 ppm inorganic cyanide. At the end of the experiment (42 days), hepatic and renal activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and rhodanese were measured.

Results: Potassium cyanide administration caused elevation of all measured liver enzymes in group 2, although the increase was only significant for AST and ALT activities as compared to control values (P<0.05). Moreover, renal AST activity in rats from group 2 was significantly higher than those from controls.

Conclusion: The altered tissue activities of some enzymes in the present study might reflect the metabolic disturbances due to cyanide intoxication in studied organs. However, further research should be focused on this issue for better understanding of the fine mechanism of cyanide effects upon metabolic enzyme activities.

Keywords: Cyanide Poisoning, Rat, Tissue Enzyme.

INTRODUCTION

Cyanide (CN) is a potent inhibitor of aerobic metabolism, acting on cytochrome oxidase, the final component of the mitochondrial respiratory chain. It is one of the most toxic substances, affecting all classes of living cells whether they are plants, animals or microorganisms. Many natural (i.e. various species of bacteria, algae, fungi, and higher plants) as well as industrial products had contained cyanide [1]. Cyanide compounds used extensively in the mining and various industrial applications [2]. Cyanide poisoning can be caused through ingestion of cyanogenic foodstuffs, occupational exposure, or exposure to chemical warfare agents containing cyanide [1].

Deaths from acute cyanide intoxication have been documented in several species of animals [3, 4]. Besides acute lethal cyanide poisoning, its chronic intoxication may also produce some pathologic effects on different tissues that precedes alterations in biochemical parameters. The most widespread problems arising from cyanide are from chronic/sub chronic exposures. Chronic cyanide toxicity has been involved in the pathogenesis of some health problems like goiter and tropical ataxic neuropathy [5, 6]. Moreover, chronic cyanide intoxication has induced alterations in some tissue biochemical, histological and oxidative stress parameters in experimental animal models [2, 7-12].

Species differences have been reported on the organ-specific biochemical markers and the susceptibility to various toxic agents [13]. Enzymes are the catalysts of all biological and metabolic reactions in cells and their activities are considered as sensitive biochemical indicators used to investigate cellular injury, metabolic disturbances, and enzyme inactivation or induction by exogenous chemicals [14]. Alterations of the enzyme activities in functional

1. Department of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
*Corresponding Author: E-mail: baghishani@ferdowsi.um.ac.ir
organs may reflect the disruption of metabolic integrity [2].

The present study was aimed to assess the effects of sub-lethal cyanide exposure on tissue enzyme alterations of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase and rhodanese in liver and kidney of rats.

MATERIALS AND METHODS

Experimental Design and Sampling

Twelve male Wistar rats weighing approximately 180 g were divided randomly into two groups each of 6 cases. All these animals were acclimatized for 7 days before the beginning of experiment. The animals were housed in plastic (polypropylene) cages using paddy husk bedding at room temperature (25 ± 1°C) in a 12-h light/dark cycle with 50 ± 5% humidity. Animals received standard laboratory balanced commercial diet *ad libitum*. Group 1 rats received basal diet and tap water throughout the experiment and served as the control. Rats in group 2 received basal diet and tap water containing 200 ppm inorganic cyanide (KCN, Merck, Germany).

The experiment was approved by Research Ethics Committee of the Faculty of Veterinary Medicine of Ferdowsi University of Mashhad. At the end of the experiment (42 days), all rats were exterminated by ether anesthesia, their liver and kidneys removed and dissected. Tissue samples cleaned free of extraneous material and washed with physiological saline. Samples from liver and kidney were frozen in liquid nitrogen and stored at –70 °C until analysis.

Analysis and Measurement

Tissue samples were rapidly thawed and homogenized in 10 volumes (w/v) of ice-cold 0.05 M phosphate buffer (pH 7.4) for 5 min, and centrifuged at 4,000×g for 15 min at 4 °C and the supernatant was kept in ice until assayed. The activities of aspartate aminotransferase (EC 2.6.1.1, AST) and alanine aminotransferase (EC 2.6.1.2, ALT) were determined by the colorimetric method of Reitman and Frankel [15]. Activities of lactate dehydrogenase (EC 1.1.1.28, LDH) and alkaline phosphatase (EC 3.1.3.1, ALP) were determined colorimetrically [16]. Rhodanese was assayed based Sorbo [17] as described previously [18], in which its activity as followed by the production of thiocyanate from thiosulfate and cyanide. All the enzyme activities were presented in units per gram tissue wet weight.

Statistical Analysis

All data have been represented as mean ± standard error of mean (SEM). The obtained values were analyzed using Student’s *t* test. The level of significance was set at *P* < 0.05. All calculations were performed using SPSS/PC software (Chicago, IL, USA).

RESULTS

Mortality was not observed in any experimental group throughout the study. Values of measured enzymes activities in liver and kidney of experimental groups are shown in Table 1 and 2. KCN administration caused elevation of all measured liver enzymes in group 2, although the increase was only significant for AST and ALT activities as compared to control values (Table 1). Moreover, renal AST activity in rats from group 2 was significantly higher than those from controls (*P*<0.05) (Table 2).

Table 1. Values of liver enzyme activities (U/g tissue) in experimental groups (n=6 in each group).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Cyanide</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>256.55±29.46<sup>a</sup></td>
<td>449.38±48.02<sup>b</sup></td>
</tr>
<tr>
<td>ALT</td>
<td>71.23±7.86<sup>a</sup></td>
<td>119.94±13.24<sup>b</sup></td>
</tr>
<tr>
<td>ALP</td>
<td>185.90±38.72</td>
<td>234.24±68.27</td>
</tr>
<tr>
<td>LDH</td>
<td>808.27±176.72</td>
<td>1217.84±96.58</td>
</tr>
<tr>
<td>Rhodanese</td>
<td>42.29±12.33</td>
<td>57.96±13.58</td>
</tr>
</tbody>
</table>

Mean±SEM in each column with no common superscript differ significantly (*P*<0.05) with respect to control.

Table 2. Values of kidney enzyme activities (U/g tissue) in experimental groups (n=6 in each group).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Cyanide</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>164.70±20.05<sup>a</sup></td>
<td>279.95±23.24<sup>b</sup></td>
</tr>
<tr>
<td>ALT</td>
<td>54.69±9.15</td>
<td>91.07±13.26</td>
</tr>
<tr>
<td>ALP</td>
<td>260.27±75.85</td>
<td>350.97±82.01</td>
</tr>
<tr>
<td>LDH</td>
<td>658.12±101.22</td>
<td>693.19±30.03</td>
</tr>
<tr>
<td>Rhodanese</td>
<td>29.60±8.63</td>
<td>23.49±4.89</td>
</tr>
</tbody>
</table>

Mean±SEM in each column with no common superscript differ significantly (*P*<0.05) with respect to control.

DISCUSSION

Studies on the tissue enzyme alterations might reflect the metabolic abnormalities and
cellular injuries in some organs. The liver and kidney have extremely important function in detoxification and excretion of metabolic wastes and xenobiotics [13]. Exposure to toxic chemicals cause alterations in some tissue enzyme activities [7, 12, 19, 20]. AST and ALT are distributed extensively in several different organs and have important roles in carbohydrate and amino acid metabolic pathways and their activities is established to change under several physiological and pathological circumstances [21].

In the present study, hepatic AST and ALT and renal ALT levels were raised in cyanide exposed animals. Elevated serum activities of ALT following sublethal cyanide poisoning have been described in rat [22] and pig [23]. Despite the present results, significant decrease of liver ALT activity has been reported in rabbits subsequent to chronic cyanide intoxication [9]. Indeed, findings of Okolie and Osagie [24] in rabbits showed no statistically significant differences in the serum and heart activities of AST following chronic cyanide exposure.

Based on the present findings, renal and hepatic LDH activities were increased no significantly subsequent to chronic exposure of rats to KCN. In line with the current finding, Okolie and Osagie [9] and Okolie and Iroanya [7] noted that cyanide feeding in rabbits led to increment of LDH in kidney, liver, and lung which may be connected to the function of LDH in anaerobic glycolytic pathway which is augmented in cyanide intoxication [7, 9]. Cyanide, known as a strong metabolic toxicant, can inhibits the terminal step in respiratory chain, resulting in cellular hypoxia and a shift from aerobic to anaerobic metabolism. In this poisoning, increased anaerobic glycolytic pathway helps refund for less ATP from oxidative phosphorylation; however the surplus pyruvate formed is converted into lactate.

Rhodanese (thiosulphate: cyanide sulfurtransferase; EC 2.8.1.1) is a pervasive enzyme that is active in all living organisms and is supposed to be involved in cyanide detoxification [1, 18]. Rhodanese-catalyzed conversion of cyanide to thiocyanate (SCN) is one of the particular in vivo metabolic reactions for cyanide detoxification [1]. The role of rhodanese in cyanide detoxification is supported by the high activities of it in some mammalian tissues (e.g., the hepatic tissue) exposed to cyanide [25]. As the preset results show, cyanide administration caused no significant alteration in rhodanese activity of liver and kidney that is different from previously reported results [7, 12] indicating significant increment of hepatic and renal rhodanese activities in cyanide-dosed rabbits.

Alkaline phosphatase is involved in the hydrolysis of a wide range of phosphomonoester substrates. Significant alterations of ALP activity associated with sublethal long term cyanide exposure have been documented in hepatic and renal tissues of rabbits [7, 9]. Indeed, Okolie and Osagie [24] showed significant decreases in ALP activity in the lungs of rabbits subsequent to chronic exposure to cyanide and suggested the existence of variabilities in tissue susceptibilities to the toxic effect of chronic cyanide exposure. However, the current study results found no significant difference in hepatic and renal ALP activity between two experimental groups.

As noticed above, some variations exist in the literature concerning the effects of cyanide poisoning on the tissue enzyme profile that might be associated to diversities in toxicokinetic parameters of cyanide compounds in various species, utilized dose, route and timing of exposure, tissue susceptibilities, experimental situations and procedures or other unknown factors.

CONCLUSION

Sub lethal cyanide exposure leads to disruption of some biochemical and physiological processes as showed by changes in some metabolic enzyme activities in liver and kidney of rats. However, further research should be focused on this issue for better understanding of the fine mechanism of cyanide effects upon enzyme activities.

ACKNOWLEDGMENTS

This work was supported by grant from Ferdowsi University of Mashhad, Mashhad, Iran. The authors declare that there is no conflict of interests.

REFERENCES

http://www.ijt.ir; Vol 10, No4, July-August 2016

