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ABSTRACT 

Background: Iron oxide nanoparticles are commonly used for various purposes, such as biomedical, medical, and cosmetic services and 
research. However, there is a little information about the effects of the nanoparticles on human health. The current investigation was 
conducted to evaluate the adverse effects of iron oxide nanoparticles (FeNP) on the reproductive organs of mice, such as the testicular tissue 
and sperm cells. 
Methods: Twenty-eight male NMRI mice were randomly divided in four groups (N=7). The control group received only a regular diet. The 
experimental groups were administered FeNP in doses of 50, 150 and 300 mg/Kg intraperitoneally (IP), over four days. Epididymal sperm 
parameters, such as sperm number and motility were assessed by computer-assisted sperm analysis (CASA). Stereological analysis was also 
conducted on the histological sections. 
Results: The results demonstrated that FeNP (300 mg/Kg/day) caused a significant decrease in the sperm parameters, such as motility, 
spermatogonia, primary spermatocytes, spermatid, Sertoli, Leydig cells, total length of seminiferous tubules, and testicular interstitial tissue 
volumes. 
Conclusion: In summary, FeNP affected several reproductive tissue and cellular parameters at the administered dosage. Further 
research is required to examine the mechanism of action of FeNP the mice reproductive system. 
Keywords: Iron Nano-Particles, Mice, Sperm Parameters, Testicular Tissue.  
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INTRODUCTION 

The spermatogenesis is the production and release of 
spermatozoa from the primordial germ cells in the testis. 
This process may be affected by such environmental 
factors as nanoparticles [1]. It is known that humans are 
in contact with nanoparticles both directly and indirectly 
throughout life [2]. Among the compounds used in 
medical research, the adverse effects of iron oxide 
nanoparticles (FeNP) are have caused concern in 
medicine because of the superparamagnetic features. 
These nanoparticles are used in magnetic storage, 
catalysis, electronic sensors, and high-sensitivity 
biomolecular magnetic resonance imaging (MRI) in 
medical diagnosis and therapeutics [3,4]. One reason 
that makes nanoparticles highly reactive is their surface 
to mass ratio which is greater than that for other 
substances [5]. Nanotoxicology investigations help us 
ascertain the extent to which they  may be harmful to 
human health and the ecosystems [6]. Nanoparticles can 
enter the human body through three routes: respiratory, 
digestive and tactile [7,8]. They can intensify the 
influence of carbon nanoparticles, causing high 
reactivity, including increased generation of reactive 
oxygen species [ROS] and oxidative stress on cells,  
resulting in inflammatory damage to proteins, cell 
membranes and DNA [9]. Most nanoparticles may exert 
harmful effect on spermatogenesis; however, not all of 
them are toxic [10]. The mechanism by which 
nanoparticles impair spermatogenesis and the blood 
supply to testis is unclear [11,12]. Previous studies have 
reported the passage of nanoparticles through the sperm 
plasma membrane of mice and the detrimental effects on 
the reproductive function.  Few in vitro studies 

examined the effect of nanoparticles on the 
spermatogenesis and reproductive system in mice [13-
15].  

The effect of nanoparticles on the spermatogenesis is 
influenced by such factors as dosage, administration 
routes, size of nanoparticles, and type of animal [12]. 
Recent animal research has demonstrated that 
nanoparticles can depositin various organs throughout 
the body, and move from the initial absorption site, e.g., 
the lungs and skin to secondary organs such as ovaries 
and testes [16,17]. The aim of this study was to examine 
the adverse effect of FeNP on the testicular tissue and 
sperms of adult male mice. 

MATERIALS AND METHODS 
Experimental Animals and FeNP203  

In this study, twenty-eight 6-8 week-old male NMRI 
mice, weighing 28-32g were purchased from Pastor 
Institute, Tehran, Iran. The FeNP (Fe2O3) with a 
diameter of 20-30 nm were purchased from Nano Pars 
Lima Company (Tehran, Iran). 

Study Design 
The Ethics Committee of Shahid Beheshti University 

of Medical Sciences, Tehran, Iran, approved the study 
design and animal use (IR. SBMU. SM. REC.1394.31). 
The mice were randomly divided into 4 groups 
consisting of seven mice per group, one controls and 3 
experimentals. The experimental micewere administered 
with a dose of 50, 150 or 300 mg/Kg FeNP 
intraperitoneally repeated over four days. The mice were 
housed at standard temperature (22°C), humidity 
(45±5%) and light (12hr light/dark cycle) conditions. 



Iranian Journal of Toxicology                                                                                              Sepideh Mirzaei Varzeghani et al 

40 
Volume 12, No 6, November-December2018; http://www.ijt.ir 

Epididymal Sperm Preparation and Analysis 
One week after the last FeNP injection, the mice were 

anesthetized by ketamine/xylazine, then the testes and 
epididymides were surgically removed. Immediately 
after dissection, caudal epididymides were minced in 
5mL PBS and incubated at 37ºC for 30 minutes to allow 
sperms to leave the epididymal tubules. We determined 
the sperm concentration (sperm/mL), number of sperms 
with progressive motility and sperm motility parameters 
as follow: curvilinear velocity (VCL), straight line 
velocity (VSL) and average path velocity (VAP), which 
were analyzed using a computer assisted program 
(CASA; HTM-IVOS, Version 10.8 (Hamilton Thorne 
Research, Beverly, MA, USA). 

Tissue Preparation 
For the histological examination, small pieces of 

testicular tissue were fixed overnight in 10% buffered 
neutral formalin, dehydrated and processed in paraffin 

wax then sectioned into 5µm sections, stained with 
hematoxylin and eosin, and examined by light 
microscopy.  

Estimation of the Testis and Interstitial Tissue 
Volume 

The total volumes of the testis and interstitial tissue 
were estimated stereologically by the Cavalieri method 
[14,15] (Fig. 1). Eight to 10 sections were selected, 
using a systematic uniform random sampling for 
stereological estimations. The image of each section was 
evaluated using a video-microscopy system, consisting 
of a light microscope (Nikon, E-200, Japan) linked to a 
video camera.  The testis volume was estimated by the 
following formula: V (testis) = ΣP × a/p × t, where “ΣP” 
was the total points hitting the testis sections, “a/p” was 
the area associated with each point, and “t” was the 
distance among the sampled sections. 

 

 
Figure. 1. Seminiferous tubules and Interstitial tissue (100x); Spermatogonia, spermatocyte, spermatid, sertoli cells and 
leydig cells (400x) (arrowheads). 
 
Estimating the Length of Seminiferous Tubules 

Six random fields from the sections of seminiferous 
tubule tissues were selected and the number of the 
selected tubule profiles was counted using an unbiased 
counting frame, i.e., an average of 130–150 seminiferous 
tubules per testis was estimated (Fig. 1). The length 
density of seminiferous tubules was also estimated using 
the following formula  Lv= 2 x ΣQ/ a/f x ΣP [14,15], 
where ΣQ = the total number of the seminiferous 
tubules, a/f = the area per frame and ΣP = the total points 
superimposed on the testis tissue. The total length of the 
seminiferous tubules was estimated by multiplying the 
lengths density (Lv) by the total volume of each testis. 

Estimating the Number of Spermatogonia, 
Spermatocyte, Spermatid, Sertoli and Leydig Cells 

We determined the number of spermatogonia, 
spermatocyte, spermatid, Sertoli and Leydig cells, using 
the optical dissector method and an unbiased counting 
frame (Fig. 1). The position of the microscopic fields 
was selected by systematic uniform random sampling, 
with moving the stage in equal distances in X and Y 
axes. The focal plane was moved downwards in Z axis. 
Then, a microcator (a mechanical comparator) was 
attached to the microscope stage (Heidenhain, Germany) 
to measure the z-axis traveling (depth).The number 

density (Nv) of different type of cells was estimated, 
using the following equation [18,19]:  

Nv (cells) = [ΣQ- / (h × a/f × Σp)] × (t / BA)   , Where 
ΣQ = total number of counted cells, a/f = area per frame, 
ΣP = total number of the counting frames in all optic 
fields, h = height of the dissector, t = real section 
thickness, and BA = section thickness made by 
microtome.  The equation product was then multiplied 
by the total volume of the testis to obtain the total 
number of cells: N (total) = NVv ×V (final). 

Statistical Analysis 
The statistical analysis was performed using SPSS 

version 22 for Windows (Chicago, IL, USA). All 
parameters were analyzed by one way ANOVA and the 
obtained data were expressed as Mean ± standard error 
(±SE). For the parameters with significant differences 
among groups, multiple comparison tests were carried 
out at a confidence level of p<0.05. 

RESULTS 
Sperm Motility Analysis 

After for four days of tissue exposure to FeNP (300 
mg/Kg/day), our computer-assisted sperm analysis 
(CASA) showed that the values for curvilinear velocity 
(VCL), straight line velocity (VSL) and average path 
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velocity (VAP), progressive and immotile sperm 
decreased significantly (p=0.04, p=0.00, p=0.02) 
compared with those for the controls (Figures 2A & 2B). 
The percentage of sperms with rapid progressive 
motility was significantly (p=0.02) decreased for the 
highest dose (300 mg/Kg/day) of FeNP in comparison to 
that for the controls. Also, the percentage of immotile 
sperms was significantly (p=0.00) increased for the 
highest dose (300 mg/Kg/day) group compared to that 
for the control. The sperm motility parameters at doses 

of 150 mg/Kg/day and 50 mg/Kg/day FeNP, although 
decreased, were not significantly different from those 
observed for the controls. 

Sperm Concentration 
We observed a decline in sperm concentration for all 

experimental groups, however, the differences were not 
statistically significant (Fig. 2C).  

 

 
Figure 2. (A) The effect of Fe2O3 on Sperm progressive motility (µm/s); (B) Sperm movement parameters (µm/s); and 
(C)  Sperm Concentration in control and experimental groups. ٭ Significant difference (p=0.00 for immotile, p=0.02 for 
progressive, p= 0.04 for VCL, p= 0.00 for VSL, p= 0.02 for VAP) compared with control group. 
 
Stereological Assessment of the Spermatogonia 
Cells 

The results showed that the number of spermatogonia 
cells was significantly reduced in the experimental mice 
treated with FeNP (300 mg/Kg/day) for four days in 
comparison to those documented for the control group 
(P=0.03). The groups that received 150 mg/Kg/day and 
50 mg/Kg/day FeNP showed no significant difference in 
the above parameter compared to those for the controls 
(Fig. 3A). 

Number of Primary Spermatocytes 
There was a significant reduction in total number of 

the spermatocytes in mice treated with 300 mg/Kg/day 

of FeNP compared to that observed for the control group 
(P=0.04). However, no significant differences were 
detected for the other experimental groups compared to 
that of the controls (Fig. 3B). 

Number of the Spermatids 
There was a significant reduction in the total number 

of the spermatids in the group receiving the highest dose 
of FENP (300 mg/Kg/day) for four days compared to 
those noted for the control group (P=0.04). However, no 
significant reduction in spermatid cells was recorded in 
groups receiving 150 and 5o mg/Kg/day FeNP compared 
to that in the control group (Fig. 3C). 

 
Figure 3. (A) The effect of Fe2O3 on the number of spermatogonia cells; (B) the number of Primary Spermatocyte Cells; 
(C) the number of Spermatid Cells; and (D) the number of Sertoli Cells and Leydig Cells in control and experimental 
groups. ٭Significant difference (p=0.03 for spermatogonia, p=0.04 for Primary Spermatocyte, p=0.04 for Spermatid, 
p=0.00 for Sertoli Cells, p=0.00 for Leydig Cells) compared with control group. 
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Number of the Sertoli and Leydig Cells 
The total number of sertoli cells was significantly 

reduced in the mice treated with 300 mg/Kg/day FeNP 
compared to that for the control group (P=0.00). While 
the other two experiemental showed no significant 
differences in the total cell numbers compared to that 
noted for the control group. Similarly, the results 
demonstrated that the total number of leydig cells was 
significantly lower in the mice treated with 300 
mg/Kg/day FeNPcompared to that found for the control 
group (P=0.00). The other two experiemental groups 
(150 & 50 mg/Kg/day FeNP) showed no significant 
differences in the number of Leydig cells compared to 
that for the control group (Fig. 3D). 

Length of Seminiferous Tubules 
The total length of seminiferous tubules was 

significantly reduced in the mice treated with 300 
mg/Kg/day FeNP compared to that noted for the control 
group (P=0.00). Likewise, no significant differences 
were noted for the other two experiemental (150 & 50 

mg/Kg/day FeNP) compared to that seen in the control 
group (Fig. 4A). 

Volume of Testis 
The total volume of testis (VT) was significantly 

lower in the mice treated with the highest FeNP dose 
(300 mg/Kg/day) compared with that observed for the 
control groups (P=0.00). Similarly, the other two 
experimental groups (150 & 50 mg/Kg/day FeNP) 
showed no significant differences for this parameter 
compared to that for the control group (Fig. 4B).  

Volume of Interstitial Tissue 
There was a significant reduction in the total volume 

of interstitial tissue (ViT) of mice treated with 300 
mg/Kg/day FeNP, compared to that for the the control 
groups (P=0.00). The other two experimental groups 
(150 & 50 mg/Kg/day FeNP) showed no significant 
differences for this parameter compared to that recorded 
for the control group (Fig. 4C).  

 
Figure 4. (A) The effect of Fe2O3 on length of Seminiferous Tubules (mm); (B) Volume of Testis (mm3); and (C) Volume 
of Interstitial Tissue (mm3) in control and experimental groups.  ٭ Significant difference (p= 0.00 for length of 
Seminiferous Tubules, p= 0.00 for Volume of Testis, p= 0.00 for Volume of Interstitial Tissue)  compared with control 
group. 

 
DISCUSSION 

This study investigated that the effects of FeNP 
induced impairment of sperm and testicular tissue in 
male mice, using modern stereological methods, 
rendering unbiased and accurate laboratory estimations. 
The results demonstrated that significant reductions in 
the sperm motility (VCL, VSL & VAP), the total testis 
volume, seminiferous tubules length, interstitial tissue 
volume, and the total number of leydig, sertoli, 
spermatocyte, spermatid and spermatogonial cells of the 
mice treated with 300 mg/Kg FeNP intraperitoneally 
compared to those noted for the control group.  

Nanoparticles have been used for a variety of 
objectives recently and their harmful effects have been 
reported by previous studies [16,20]. Nanoparticles, such 
as FeNP have shown to induce morphological changes 
in testicular tissues and reproductive function [21,22]. 
Some studies have found that they have the ability to 
generate reactive oxygen species (ROS) which cause 
oxidative stress, cellular and DNA damage [9, 23-25].  

Other investigations have reported that as sperm 
mobility occurs  in epididymis, inflammation of 
epididymis that is induced by nanoparticles exposure, 
could diminish sperm motility [1,26-29]. Reportedly, 
sperm motility is probably reduced due to the impact of 
silver nano-particles on mitochondrial functions [30]. 
Nasri et al. have also found that iron oxide nanoparticles 
decreased sperm mobility in male mice [31]. Further, 
significantly lowered sperm motility in male mice was 
also shown by Guo et al. after treating them with a high-
dose (500 mg/Kg) of titanium dioxide nanoparticles 
(TiO2) [32]. According to findings of Braydich-Stolle et 
al. silver and aluminum nanoparticles can pass through 
the cell membrane and affect mitochondrial functions 
[33,34]. Taken together, changes in sperm motility as 
seen in this study is likely to be related to the 
mitochondrial dysfunction as confirmed by a previous 
study [35]. The findings of these studies were consistent 
with our results regarding the adverse effect of FeNP on 
sperm motility. Our study showed significant 
histological changes occurring at dosage of 300 mg/Kg 
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of FeNP and to an insignificant degree in the other 
experimental groups (150 & 50 mg/Kg/day FeNP). The 
later finding has not been reported by previous studies. 

Cell viability may be impaired by the disruptive 
effects of nanoparticles on the membrane receptors or 
cellular signal transduction mechanisms [36]. Braydich-
Stolle et al. reported that cadmium nanoparticles could 
lead to lysosomal damages in Sertoli cells [34]. 
According to a previous study, zinc oxide nanoparticles 
caused testicular tissue damages in mice including 
detachment, sloughing and vacuolization of the 
seminiferous tubules. In this study, sertoli cells have 
contained vacuoles, indicative of damage resulting from 
exposure to FeNP [14,37]. Another study has reported 
that diesel-exhaust particles (DEPs) TiO2 and carbon 
black (CB) nanoparticles were taken up by Leydig cells, 
impairing their viability and proliferation. According 
two studies, the viability of leydig cells were affected by 
iron oxide nanoparticles [32,38]. Also, silver 
nanoparticles have reduced the number of Leydig cells 
in male Wistar rats [30]. Miresmaeili et al. examined the 
effect of silver nanoparticles (AgNP) on rat 
spermatogenic cells but did not detect any significant 
reduction in the number of Sertoli cells [39]. In contrast, 
Ema et al. showed that TiO2 nanoparticles reduced the 
number of Sertoli cells and disrupted the seminiferous 
tubules. Our previous findings demonstrated that a 
single intraperitoneal injection of 500 or 700 mg/Kg/day 
zinc oxide nanoparticle (ZnOn), the number of A type 
spermatogonia cells was significantly decreased [40]. 
Further, a significant reduction in primary spermatocyte 
cells was observed following exposure to ZnOn at a 
dosage of 500 mg/Kg/day in male mice. Sensitivity of 
the mammalian spermatogonial stem cells to Ag-NP has 
been reported by Braydich-Stolle et al. [41]. Some NPs 
are able to penetrate the blood–testis barrier and  
impair the spermatogenic process [12]. Previous studies  
have indicated that nanoparticles of  gold and iron oxide 
(Fe2O3 and Fe3O4) could exert oxidative stress, ROS 
production and mitochondrial damage, which lead to the 
accumulation of autophagosomes and cellular autophagy 
[42]. We believe that these mechanisms are likely to be 
involved in FeNP toxicity. It has been suggested that 
elevated release of Fe2+ ions in high concentrations may 
enter the cells and damage intracellular structures. 
Consistent with our findings, Collodel et al. examined 
the damaging effect of gold and silver nanoparticles on 
the rat spermatocytes and spermatids [36]. The 
stereological findings of our study were similar to 
another research conducted by Ajdary et al.  In that 
study Wistar adult male rats that were given Mn2O3 
nanoparticles orally at 400 ppm for 14 days, displayed 
cellular damages in the testicular tissue and a reduction 
in the number of spermatogonial, primary spermatocyte, 
spermatid, and the Leydig cells [43]. 

CONCLUSION  
The present study demonstrated that the adverse 

effects caused by FeNP at high dosage (300 mg/Kg/day) 

on sperm motility and such histological parameters as 
total volume of testis, total lenght of seminiferous 
tubules, total volume of interstitial tissue and the total 
number of Leydig, Sertoli, spermatocyte, spermatid and 
spermatogonial cells could compromise fertility 
capacity. Thus, the toxicity effects of these nanoparticles 
on human health must be given high attention, especially 
because of the development of nanotechnology in 
various industries and nations. Further investigations are 
required to clarify the exact mechanisms of 
nanoparticles effects on animal and human reproductive 
system. 
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