Anti-Oxidant and Hepatoprotective Effects of *Senecio biafra* on CCl4-induced Liver Damage in Rats

Israel Oghenevwodoko Okoro*†, Helen Ejiro Kadiri‡

Department of Biochemistry, Delta State University, Abraka, Delta State, Nigeria.

Article Info

Article type:
Original Article

Article History:
Received: 2019-02-23
Accepted: 2019-04-17

*Corresponding author:
Israel Oghenevwodoko Okoro
Department of Biochemistry, Delta State University, Abraka, Delta State, Nigeria.
E-mail: israelik@yahoo.com

ABSTRACT

Background: The present study was performed to explore whether the aqueous extract of *Senecio biafra* (*S. biafra*) roots provide any in vivo protective activity against carbon tetrachloride (CCl4)-induced hepatotoxicity in male albino rats.

Methods:
Rats (150-200 grams) were grouped into five groups (A-E) of six rats each and were treated orally for twelve days with 72 hourly administration of CCl4 (1 mL/kg) as follows: Group A received distilled water only (negative control), Group B was administered distilled water plus CCl4 (positive control), Group C was administered 400 mg/kg extract and CCl4, Group D received 200 mg/extracet and CCl4, while Group E was administered standard drug (Silymarin 25mg/kg, PO).

Results:
Pre-treatment with the extract of *S. biafra* (200 or 400mg/kg) or Silymarin (25mg/kg) caused significant restoration in the biomarkers as evaluated by reducing the levels of malondialdehyde, transaminases and elevating the levels of superoxide dismutase, catalase and glutathione peroxidase activities, which were altered by CCl4 toxicity. The extract at a dose of 400mg/kg demonstrated similar activities comparable to the standard drug (Silymarin).

Conclusion:
The results of this study indicate that the root extract of *S. biafra* possesses hepatoprotective and anti-oxidant properties which may be due to the presence of phytochemicals in it.

Keywords:
Anti-Oxidant; Carbon Tetrachloride; Hepatoprotective; Senecio Biafrae; Silymarin.

INTRODUCTION

Carbon tetrachloride (CCl4)-induced liver damage is an oxidative-stress model employed for screening of hepatoprotective compounds (1). Carbon tetrachloride is known to induce hepatotoxicity by exerting oxidative stress on the organ. A relationship between lipid peroxidation and oxidative stress has previously been described (2). Trichloromethyl radical (CCl•), a metabolite (toxic intermediate) from the cytochrome P450 system of enzymes in liver microsomes, is reported to give rise to liver damage. CCl4-induced liver damage progresses from steatosis to centrilobular necrosis, thereby developing fibrosis and cirrhosis (3).

The liver has an important role in nutrients metabolism and chemicals. It is also involved in the excretion of xenobiotics from the body and providing protection against harmful foreign materials through detoxification and elimination (4). Liver injury arising from several etiologies are said to cause steady failure in hepatic functions. Free radicals, food additives, alcohol, pollutants and xenobiotics are the key risk factors leading to cirrhosis, alcoholic liver diseases and hepatitis (5).

Treatment of liver-related diseases is important and should be handled with utmost care. Not all conventional drugs available for regeneration of liver cells are without hepatotoxic side effects (6). Therefore, it is essential to explore safe and hepatoprotective agents, in the context of traditional and medical knowledge (7). *S. biafra* is a naturally occurring herb found in African forest areas. It is used as a green leafy vegetable in Sierra Leone, Benin,
Nigeria, Ghana, Cameroon and Gabon. It contains several metabolites like sesquiterpenes, dihydroisocoumarins, amino acids and terpenoids (8). It is used in Nigeria for the treatment of pulmonary conditions and women infertility (9). The plant has been reported to have antimicrobial (10) and antihypertensive properties (11). Similarly, its antidiabetic and physicochemical properties have previously been reported (12). Our findings from traditional healers about the herb in the Niger Delta revealed that the root has been used for the treatment of liver-related diseases amongst others. Considering that other species of Senecio have shown hepatoprotective activity (13) and the phytochemical profile of the plant (10, 14), the present study was performed to investigate whether the aqueous extract of S. biafrae roots demonstrate any in vivo protective activity against CCl4-induced liver damage in rats.

MATERIALS AND METHODS

Reagents and Chemicals: Silymarin and CCl4 were purchased from Sigma chemicals (St. Louis, USA). Diagnostic kits for serum total bilirubin (TBIL), Albumin (ALB), Total protein (TP), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) were purchased from Randox Laboratories Ltd. (Ardmore, UK). All other chemicals for this experiment were obtained locally, and were of analytical grade.

Plant Material: The roots of S. biafrae were collected from Akoko, Ondo State, Nigeria, and authenticated by Dr. H.A. Akinobosun of the Department of Plant Science (Reference voucher #: UBHs 0149), University of Benin, Edo State, Nigeria.

Preparation of Plant Materials: The collected, shade dried roots were pulverized to fine powder by pestle and mortar. They were extracted with distilled water by soaking fifty grams in 200mL of the solvent in air tight flask and shaken daily for three days. The mixture was filtered through muslin cloth and Whatman No. 1 filter paper and concentrated under reduced pressure and low temperature using a rotary evaporator. The resultant extract was kept at 4°C reduced pressure and low temperature using a rotary evaporator. The resultant extract was kept at 4°C.

Animals: The male albino rats (weighing 150-200g) were bought from the Anatomy Department of Delta State University, Abraka, Nigeria. They were fed grower’s mash (Top Feeds, Ltd, from Sapele in Delta State, Nigeria) and water ad libitum. The animals were maintained in agreement with the guidelines of the institutional Committee for the Care and Use of Laboratory Animals (Publication No. 85-23, revised 1985).

Grouping and Treatment of Animals: The rats were divided into five groups (A–E) of six rats each and were treated orally for twelve days as follows: Group A received distilled water only (negative control), Group B was administered distilled water plus CCl4 (positive control), Group C was administered 400mg/kg extract and CCl4, Group D received 200mg/extract and CCl4, while Group E was administered the standard drug (Silymarin 25mg/kg, PO). The CCl4 was given at a dose of 1mL/kg of body weight (BW; 30% concentration in liquid paraffin) 72 hours after the first extract or Silymarin administration and subsequently every other 72 hours. The animals were sacrificed by decapitation 24 hours after the last administration to obtain their blood and organs, which were used for the biochemical assays. The blood was allowed to clot after collection and centrifuged at 3000×g (15min), while the liver tissues were homogenized in phosphate buffer (pH 7.4) and centrifuged at 3000g for 10 min. Thereafter, the supernatants were collected and used for the assays.

Determination of Serum Hepatoprotective Markers: The activities of serum aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), total bilirubin (TBIL), albumin (ALB) and total protein (TP) were tested by assay kits, obtained from Randox Laboratories Ltd. (Ardmore, UK).

Determinations of Antioxidant Activity In Vivo: The levels of lipid peroxidation was evaluated based on the reaction of two moles of N-methyl-2-phenylindole, a chromogenic reagent, with one mole of either malondialdehyde (MDA) or 4-HNE at 45°C for 60 min to yield a stable chromophore with a maximum absorbance at 586 nm as described elsewhere (15). Catalase activity was evaluated according to the method of Aebi (16). Glutathione peroxidase activity was determined following NADPH oxidation at 340nm in the presence of excess reduced glutathione, glutathione reductase and corresponding peroxide (17). Liver superoxide dismutase (SOD) activity was evaluated according to the method described by Kakkar et al. (18), while glutathione-S-transferase (GST) activity was estimated by the method of Habig et al. (19).

Statistical Analysis: The results were calculated by the Graph pad Prism 6 software using one-way ANOVA followed by Tukey-Kramer multiple comparisons test. A confidence level of p<0.05 was considered significant. The values shown in Tables 1 and 2 are as means ± standard deviation (SD).

RESULTS

Biochemical Changes in Serum Markers: The effects of aqueous extracts of S. biafrae on the liver function of CCl4 intoxicated rats, after twelve days of treatment, are shown in Table 1. The administration of CCl4 significantly (p<0.05) increased ALT and AST levels in the positive control group B, compared to those in negative control group A. Also, a significant increase (p<0.05) in ALP and TBIL levels were found in group B rats relative to those in normal control group A. On the other hand, treatment with either the extract or the standard drug significantly (p<0.05) reduced the levels of serum hepatic enzymes ALT, AST & ALP and TBIL, compared with those in positive control group B. However, lower levels of albumin and total protein

Israel Oghenevwodoko Okoro and Helen Ejiro Kadiri

Antioxidant and Hepatoprotective Effects of Sambucus biafrae...

Iran J Toxicol, IJT 2019; 13 (2)
were noticed in group B rats, compared with those in negative control group A. Significantly (p<0.05) higher levels of these two parameters were detected in the rats that received either a higher dose of extract (group C) or the standard drug (group E).

Effect of Aqueous Root Extracts of S. Biafrae on Liver Biochemical Parameters: Liver biochemical parameters such as SOD, CAT, GST and glutathione peroxidase (GPx) were reduced while lipid peroxidation increased in CCl$_4$-induced rats (Group B) compared to the negative controls (Group A) as shown in Table 2. Treatment with either the extract or the standard drug restored the level of these oxidative stress markers to near normal. Thus, a striking increase in the MDA level was seen in the liver of Group B (CCl$_4$-exposed) rats relative to normal controls in Group A rats (Table 2). The increase in MDA was statistically significant (p<0.05). Likewise, the group treated with 400 mg/kg of S. biafrae extract had lower MDA levels compared to those in the standard group. Thus, the highest dose (400mg/kg) of S. biafrae extract and Silymarin showed the best results.

Table 1. Effect of S. biafrae aqueous extract on the biochemical parameters in carbon tetrachloride-induced hepatotoxicity.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Group E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>36.32±0.66</td>
<td>93.32±2.86</td>
<td>40.25±1.76</td>
<td>56.05±2.13</td>
<td>32.4±1.25</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>48.24±0.89</td>
<td>162.4±5.74</td>
<td>45.19±2.88</td>
<td>71.19±1.93</td>
<td>43.01±2.56</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>72.29±1.88</td>
<td>195.37±6.02</td>
<td>78.53±3.47</td>
<td>94.44±2.72</td>
<td>63.25±3.29</td>
</tr>
<tr>
<td>TP (mg/dl)</td>
<td>7.53±0.81</td>
<td>4.09±0.68</td>
<td>6.74±0.38</td>
<td>5.2±0.64</td>
<td>7.31±0.47</td>
</tr>
<tr>
<td>ALB (g/dl)</td>
<td>2.49±0.31</td>
<td>1.18±0.09</td>
<td>2.64±0.37</td>
<td>1.49±0.22</td>
<td>2.38±0.25</td>
</tr>
<tr>
<td>TBIL (mg/dl)</td>
<td>1.13±0.07</td>
<td>3.12±0.17</td>
<td>1.45±0.12</td>
<td>2.15±0.11</td>
<td>2.00±0.17</td>
</tr>
</tbody>
</table>

Key: *p<0.05 vs. negative controls; **p<0.05 vs. positive controls.

Table 2. Effect of Senecio biafrae aqueous extract on SOD, CAT, GPx, GST and MDA in CCl$_4$-induced hepatotoxicity.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Group E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOD (U/mg protein)</td>
<td>7.34±1.61</td>
<td>28.4±0.66</td>
<td>61.65±1.31</td>
<td>51.8±2.27</td>
<td>66.19±1.13</td>
</tr>
<tr>
<td>CAT (U/mg protein)</td>
<td>132.39±1.13</td>
<td>40.4±0.23</td>
<td>109.06±2.14</td>
<td>76.34±2.94</td>
<td>120.19±2.90</td>
</tr>
<tr>
<td>GPx (U/mg protein)</td>
<td>14.2±0.51</td>
<td>6.72±0.5</td>
<td>9.81±0.6</td>
<td>7.62±0.37</td>
<td>10.9±0.43</td>
</tr>
<tr>
<td>GST (U/mg protein)</td>
<td>8.15±0.49</td>
<td>3.07±0.53</td>
<td>6.11±0.59</td>
<td>4.15±0.46</td>
<td>7.04±0.22</td>
</tr>
<tr>
<td>MDA (nmol/mg protein)</td>
<td>6.08±0.64</td>
<td>12.79±8.2</td>
<td>6.20±0.43</td>
<td>8.48±0.65</td>
<td>6.73±0.56</td>
</tr>
</tbody>
</table>

Key: *p<0.05 vs. negative controls; **p<0.05 vs. positive controls.

DISCUSSION

The maintenance of body homeostasis is one of the major functions of the liver. Carbon tetrachloride-induced liver damage is an oxidative stress model employed for screening of hepatoprotective chemicals and drugs (20). Liver transaminases, such as AST and ALT still remain the best standards for the evaluation of liver injury and have been the preferred biomarkers for decades (21). In this study, significant liver necrosis supported by increased levels of total bilirubin, liver marker enzymes activities (ALT, AST and ALP), and decreased levels of albumin and total protein were observed in the rats treated with CCl$_4$ (Group B). But pretreatment with S. biafrae extract (200 and 400mg/kg, BW) for twelve days resulted in a significant decrease of the CCl$_4$-induced elevation of enzyme markers in serum, comparable to the effect of the standard drug, Silymarin. This drug is a well-known hepatoprotective compound derived from Silybum marianum and its protective effect on the plasma membrane of hepatocytes has been shown (22). The significant reduction in the total protein and albumin observed in CCl$_4$-treated rats might be as a result of functional failure in the cytochrome-P450 complexes (23). Thus, the result indicates that the pre-treatment of S. biafrae extract, caused restoration to normal, the activities of serum marker enzymes and the levels of total protein, total bilirubin and albumin, thus indicating that S. biafrae extract maintained the structural integrity of hepatocellular constituents and kept the liver from CCl$_4$-induced injury in vivo (24).

An essential mechanism in the protection of liver against CCl$_4$-induced damage is the inhibition of excess reactive oxygen species (ROS) production. MDA is commonly used as a major parameter and marker of lipid peroxidation when assessing the status of oxidative stress (25). In this study, we observed an elevated level of liver MDA in the CCl$_4$-treated rats, which implies an increase in lipid peroxidation with the consequent damage to tissue and breakdown of the antioxidant defense mechanisms to stop formation of excess free radicals. This result is in agreement with the previous reports that CCl$_4$ caused hepatic injury by elevating the MDA level (26). However, we also observed that pretreatment with the extract significantly decreased the CCl$_4$-induced liver MDA elevation. Therefore, the mechanism of hepatoprotection of S. biafrae extract may be due to its antioxidant potential (12,27).

Super oxide dismutase functions by removing reactive oxygen radicals and preventing the production of more hydroxyl radicals, thus considered as the initial line of cellular defense against oxidative stress (28). Catalase is a heme-containing enzyme localized largely in the subcellular organelles (peroxisomes) that converts H$_2$O$_2$ to water and O$_2$, and protects the cell from oxidative damage caused by H$_2$O$_2$ and OH group. It has been established that CCl$_4$, in addition to initiating lipid peroxidation, also reduces CAT and SOD activities in the tissue, which may be caused by oxidative alteration of these proteins (29). In this study, a decrease in the activities of SOD and CAT was noted in the CCl$_4$-treated groups, thus suggesting liver injury in the rats.
However, the rats treated with 200 and 400mg/kg BW of *S. biafrae* showed significant increase in the level of these enzymes, suggestive of the antioxidant effect of the extract (12).

Glutathione peroxidase (GSH-Px) is an essential enzyme which catalyzes the reduction of lipid hydroperoxides and H$_2$O$_2$ into H$_2$O and resultant alcohols and thereafter, terminating the processes of lipid peroxidation (30). Glutathione-S-transferase (GST) is an enzyme that catalyzes the conjugation of GSH through the sulphydryl group. It participates in the detoxification process resulting from conjugation reaction between xenobiotics and GSH (31). The activity of GST is valuable in the endogenous detoxification of compounds, such as peroxidized lipids (32). In this study, a decrease in the activity of this enzyme, in CCl$_4$ treated rats and a reversal close to normalcy in the extract or the standard drug treated rats were shown. Thus, pretreatment with *S. biafrae* led to a rise in GST activity and a decrease in the liver MDA, thereby suggesting that the protective effect *S. biafrae* may be linked to its anti-oxidative stress function.

The observed effects of *S. biafrae* extract in this study may be attributed partly to several phytoconstituents present in it, such as alkaloids, saponins, tannins, glycosides, phenols, β Carotenes, flavonoids, cardenolides, anthraquinones and steroids (10,14). These phytoconstituents could generally have contributed to the detected hepatoprotective and antioxidant activities of the plant (33-35).

CONCLUSION

Administration of CCl$_4$ at 1 ml/kg body weight to Wistar male rats resulted in an increase in lipid peroxidation and reduction in enzymatic antioxidants. *S. biafrae* extract, at 200 or 400mg dosage showed hepatoprotective effects, but 400 mg/kg was more effective, compared with the effect of standard drug, Silymarin. We conclude that *S. biafrae* extract had antioxidant and protective activities against CCl$_4$ hepatotoxicity in Wistar albino male rats, which is likely due to its ability to scavenge free radicals and reduce inflammatory responses. However, further studies are highly recommended to identify the active components of the extract and the molecular mechanisms responsible for the hepatoprotective effect.

ACKNOWLEDGEMENTS

The technical support of Mrs. Edith Omozefe Okoro of Emmanuel medical laboratory in Abraka is highly appreciated.

CONFLICT OF INTEREST

The authors declared that there was no conflict of interest in conducting this study.

REFERENCES

