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Background: The toxic effect of sodium arsenate on nervous system has been shown; but 
the protective effects of several compounds against sodium arsenate are not clear. This study 
aimed to investigate the protective effects of nicotine and bucladesine, two positive modulators 
of neuronal function, on sodium arsenate toxicity against avoidance memory impairment.

Methods: Male mice (N=154) were assigned to 22 groups (12 experimental and 10 control) of 
seven animals each and were treated as follows: sodium arsenate (2.5, 5, or 10 mg/kg) for 28 
days, nicotine (1 mg/kg) for either 1, 2, or 4 days, bucladesine (600 nM/mouse) for either 1, 2, or 
4 days, and nicotine (1 mg/kg)+bucladesine (600 nM/mouse)+sodium arsenate (2.5 mg/kg). The 
last group was treated with 2.5 mg/kg sodium arsenate first, and then received the combination 
of nicotine and bucladesine for 1, 2, or 4-days. The corresponding control groups did not receive 
any drug but either saline, deionized water, or combination of deionized water and DMSO, but 
went through the same procedure as other animals. All mice were trained 24 h in the step-through 
passive avoidance task. The avoidance memory retention was assessed at 24, 48, 96, and 168 h 
after the training period by measuring the time they stayed in a dark chamber.

Results: All sodium arsenate doses significantly reduced the time stayed in the dark chamber 
regardless of the treatment duration (24, 48, 96 & 168 h) after training. Both nicotine and 
bucladesine, whether used singly or combined for 1, 2, and 4 days significantly enhanced the 
time latency compared to the controls at all of the experimental timepoints following the training. 

Conclusion: Nicotine and bucladesine showed synergistic effects and reversed the sodium 
arsenate-induced avoidance memory deficits in mice.
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Introduction

earning and memory are two primordial 
functions of the Central Nervous System 
(CNS). Memory is a mechanism for en-
coding, storage, and retrieval of infor-
mation [1], while learning is responsible 
for the acquisition of information from 
the surrounding environments [2]. The 

integrity of learning and memory is highly dependent on 
the function of synapses and signaling pathways in the 
CNS [3]. Several chemical mediators, such as acetylcho-
line, glutamate, and norepinephrine have been implicated 
in promoting neuronal activities [4-6]. The cholinergic 
system plays a major role in regulating neuronal inter-
actions, learning integrity, and memory functions [7, 8]. 
Moreover, cholinergic neurons in the hippocampus are 
highly essential for cognitive performance [9]. Acetyl-
choline, as the neurotransmitter of the cholinergic sys-
tem, triggers numerous post-synaptic events. Choline 
Acetyltransferase (ChAT) that mediates the synthesis 
of acetylcholine, and Vesicular Acetylcholine (VAChT) 
that transports acetylcholine to synaptic vesicles, are the 
two key markers of the cholinergic system [10]. Also, it 
has been demonstrated that Protein Kinase A (PKA) pro-
motes the expression of CAT and VAChT genes [11, 12]. 
Protein kinases are also important in the maintenance of 
neuronal synaptic functions [13]. 

As mentioned earlier, PKA is a cAMP-dependent ki-
nase modulating synaptic function and gene expression 
[14]. It has been shown that the impaired PKA function 
leads to long-term memory impairment in mice [15]. 
Conversely, the activation of PKA triggers Mitogen 
Activated Protein Kinase (MAPK) signaling pathway 
that regulates the protein phosphorylation and genes 
expression responsible for the growth and development 
of new synapses in the CNS [16]. Bucladesine, with 
multiple functions a phosphodiesterase inhibitor, cAMP 
agonist and PKA activator, enters the neurons’ plasma 
membrane and is converted to cAMP in the cytoplasm 
[17]. Also, it regulates the levels of ChAT and VAChT 
proteins by the Extracellularly Regulated Kinase (ERK) 
pathway [18]. Bucladasine enhances memory through 
activating a cAMP/PKA signaling pathway via interac-
tion with such neurotransmitters as dopamine and gluta-
mine [19]. Nicotine influences a wide variety of physio-
logic activities, such as learning, memory and anxiety by 
stimulating various neurotransmitters in the CNS [20]. 
Nicotinic receptors are activated by acetylcholine in the 
cholinergic system. It has been reported that nicotine 
dose-dependently affects passive avoidance memory in 
mice [21] and memory retention in humans [22].

Arsenic (sodium arsenate) is a well-known toxic agent, 
causing acute and chronic cellular damages. Studies 
have shown that even low doses of arsenic can affect 
neurological functions [23, 24]. Also, some studies have 
reported the effects of arsenic on the central cholinergic 
system [25, 26]. It has been shown that arsenic inhib-
its the synthesis and uptake of acetylcholine in the rat’s 
brain [27]. Also, arsenic negatively affects the learning 
and memory functions, and neurogenesis through modu-
lating the signaling pathways, involving acetylcholine, 
glutamate and other monoamines [24, 28-30]. However, 
the protective roles of nicotine and bucladesine against 
sodium arsenate-induced impairments are not clear in 
terms of the retention of avoidance memory. For this 
reason, we investigated the protective effects of these 
compounds on passive avoidance memory dysfunction 
induced by sodium arsenate in mice.

Materials and Methods

Animal groups: Male mice (N=154) weighing 30-
35g each were purchased from the Faculty of Pharmacy, 
Zabol University of Medical Sciences. They were divid-
ed into 22 groups of seven each, housed at 25±2°C, 12-h 
light/dark cycles, and with free access to food and water. 

Materials: The chemicals used in this study consisted 
of sodium arsenate (Na2HAsO4.7H2O; Matheson Cole-
man & Bell), Nicotine (Sigma-Aldrich), and Buclade-
sine (dibutyryl cAMP; a phosphodiesterase inhibitor) 
were purchased from Sigma Aldrich (St. Louis, MO, 
USA). The solvents were deionized water, sodium chlo-
ride 0.9%, and Dimethyl Sulfoxide (DMSO).

Step-through avoidance learning task: Passive 
avoidance step-through equipment (Ugo Basile Compa-
ny, Italy) was used to train the animals. The animals were 
placed in a light chamber, the gate opened after 10 sec-
onds, and the time that the animals waited before going 
into the dark chamber was recorded as the latency time 
(300 sec. was set as the cut-off point). Electric shocks 
at the intensity of 0.2 mA for 2 sec. were delivered to 
the grid floor of the dark compartment. All training and 
testing trials were carried out on the same day and time 
for each animal. No electric shock was given to animals 
during the retention test.

Experiments: Table 1 illustrates the control and exper-
imental groups, materials’ doses, administration routes, 
and treatment durations. Overall, mice were divided into 
a total of 22 groups (N=7 per group) including 12 experi-
mental groups (treated with As, Nic, Bucla, & combined 

L

Najafi S, et al. Toxic Effect of Sodium Arsenate on Memory. Iran J Toxicol. 2021; 15(2):99-108.

April 2021, Volume 15, Number 2

http://ijt.arakmu.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en


101

As+Nic+Bucla) and 10 control groups (one for As, and 
three for each of the other experimental groups).

Sodium arsenate treatment: Sodium arsenate was 
dissolved in deionized water and administrated to the 
assigned groups at a dose of 2.5, 5, or 10 mg/kg. Three 
groups of mice (N=7, each) orally received 0.5 ml so-
dium arsenate at the above-mentioned doses on a daily 
basis for 4 weeks. On the 28th day, 30-60 minutes after 
the last gavage, the animals were trained in the passive 
avoidance step-through equipment. A 2-sec. shock was 
given to the floor grid at 0.2 mA when each mouse was in 
the light chamber. The latency time for leaving the light 
chamber and entering the dark chamber was recorded, 
and the memory acquisition was investigated. Avoidance 
memory retention was assessed at 24, 48, 96, and 168 h 
after the training session. During these time periods, no 
electric shock was used during the passage of animals 
from the light to the dark chamber. The animals in the 
control group received 0.5 ml deionized water, otherwise 
they went through the same procedure as did other mice.

Nicotine treatment: Nicotine at a dose of 1 mg/kg in 
normal saline (0.9%) was injected intraperitoneally (IP) 
for either a 1, 2, or 4-day period. Normal saline was in-
jected to the animals in the corresponding control groups 
for either 1, 2, or 4 days. Following the last treatment, the 
animals were trained 30-60 minutes after the injection, 
and then the memory retention test was performed at 24, 
48, 96, and 168 h post the training session.

Bucladesine treatment: Bucladesine (600 nM) was 
dissolved in a mixture of DMSO and deionized water at 
a ratio of 1:9, and injected Intraperitoneally (IP) for ei-
ther 1, 2, or 4 days. The corresponding controls received 
0.3ml of the DMSO and deionized water (1:9) mixture 
for either 1, 2, or 4 days. Following the last Bucladesine 
treatment, the animals were trained for 30-60 minutes 
and the memory retention test was conducted at 24, 48, 
96, or 168 h post training. 

Combined nicotine & bucladesine plus sodium arse-
nate treatment: The animals were treated with arsenate 
sodium (2.5 mg/kg) for 4 weeks. Then, they received (IP) 
a combination of nicotine (1 mg/kg) and bucladesine so-
dium (600 nM) for either 1 day (the 28th), 2 days (the 
27th and 28th), or 4 days (days 25 through 28). Nicotine 
was first injected followed by bucladesine administration 
after 15 minutes. On day 28, the sodium arsenate was 
administered 15 minutes after the bucladesine injection. 
On this day, the animals were also trained with the step-
through equipment, and the memory retention test was 
conducted at 24, 48, 96, or 168 h after the training.

Statistical analyses: GraphPad Prism 5 was used for 
the statistical analyses. Unpaired t-test, one-way Analysis 
of Variance (ANOVA) followed by Newman-Keuls post 
hoc test was used to statistically compare the data. The 
minimum statistical significance level was set at P<0.05.

Results

Effects of sodium arsenate on avoidance memory 
retention: All the sodium arsenate doses reduced the 
avoidance memory retention as evidenced by significant 
reductions in the time spent in the dark at 24, 48, 96, and 
168 h after the training as compared to the control group 
(P˂0.001; Table 2).

Effects of nicotine on avoidance memory retention: 
Compared to the control group, the one-day IP admin-
istration of nicotine significantly improved avoidance 
memory retention with a significant increase in the 
time spent in the dark after 48 h of receiving the elec-
tric shock (P<0.05). The 2-day nicotine administration 
enhanced the avoidance memory following 48 and 96 h 
of the electric shock event (Table 3). The 4-day nicotine 
injection significantly improved memory retention at 48 
h (P˂0.05), 96 h (P˂0.001), and 168 h (P˂0.001) follow-
ing the electric shocks (Table 3).

Effects of bucladesine on avoidance memory reten-
tion: Compared to the control group, an insignificant in-
crement was observed in the latency time of the animals 
that received a 1-day bucladesine (600 nM). However, 
the 2-day injection of this drug significantly increased 
the latency time to leave the light chamber after 48 h 
(P˂0.01), 96 h (P˂0.05), and 168 h (P˂0.05) of the elec-
tric shock. After a 4-day injection of bucladesine (600 
nM), the latency time was significantly increased at all 
48, 96, and 168 h after the electric shock (P˂0.01) com-
pared to the control group (Table 4).

Protection effect of nicotine and bucladesine on so-
dium arsenate induced deficit of avoidance memory 
retention: The data indicated that that sodium arsenate 
at 2.5mg/kg significantly attenuated the avoidance mem-
ory retention at 24, 48, 96, and 168 h after the training 
(P˂0.001). The combined nicotine and bucladesine ad-
ministration for 1, 2 or 4 days significantly increased 
the latency time at 24 (Figure 1A), 48 (Figure 1B), 96 
h (Figure 1C), and 168 h (Figure 1D) after the training 
event compared to the controls. 
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Discussion

Memory is a complex process, which requires different 
pre- and post-synaptic events. Hippocampus plays a fun-
damental role in the avoidance memory consolidation 
[31]. However, memory is not limited to the processing 

in the hippocampus, rather it is linked to the neural net-
work distributed throughout the brain [32]. The present 
study investigated the effects of sodium arsenate, nico-
tine and bucladesine on the retention of avoidance mem-
ory in mice. We demonstrated that sodium arsenate re-
duced avoidance memory retention when administered 

Table 3. Time dependent effects of nicotine on the time latency (seconds) in avoidance memory alternations in step-through model

Treatment Group 24 h 48 h 96 h 168 h

1-day
Controla 45.60±16.99 28.32±12.67 15.50±3.512 18.30±3.565

Nicotine 190.4±42.24 205.5±58.10* 113.7±49.11 26.53±6.724

2-day
Controlb 207.6±41.45 107.8±52.79 40.72±6.465 26.44±13.35

Nicotine 281.7±13.89 238.4±44.25* 192.7±50.30* 66.50±46.91

4-day
Controlc 134.2±49.61 27.77±13.24 10.80±1.422 37.48±29.38

Nicotine 218.2±47.55 251.7±48.30* 108.0±26.00*** 268.6±24.34***

*P<0.05 and ***P<0.01 show a considerable difference from control group. Values represent Means±SEM for each animal group. 
a, b, c Control groups received 0.3 mL normal saline for either 1 (a), 2 (b), or 4 (c) days.

Table 2. The effects of sodium arsenate on the time latency (seconds) in avoidance memory retention in step-through

Treatment Group 24 h 48 h 96 h 168 h

Controla 179.1±35.60 184.2±30.69 252.5±22.41 180.9±35.91

2.5 mg/kg 23.03±6.227*** 19.64±5.032*** 22.26±9.339*** 25.10±11.11***

5 mg/kg 27.58±8.777*** 23.54±5.803*** 9.320±2.240*** 9.717±2.466***

10 mg/kg 27.60±2.441*** 13.77±2.585*** 9.483±2.270*** 11.40±1.490***

***P<0.001 compared to control group. Values represent Means±SEM for each animal group. aControl group received 0.5 mL 
deionized water for 28 days.

Table 1. Administered doses of sodium arsenate, nicotine, and bucladesine in the studied groups (N=7/groups)

Groups Doses and Materials Admin. Route Duration (day)

Control

Dwa

Nsb

DMSO+Dwc

Dw, Ns, and DMSO+Dwd 

Gavage
IP injection
IP injection
Gavage & 

IP injection

28
1, 2, or 4
1, 2, or 4

28 days, and 1, 2, or 4 

As 2.5, 5, and 10 mg/kg Gavage 28

Nicotine 1 mg/kg IP injection 1, 2, or 4

Bucladesine 600 nM IP injection 1, 2, or 4

As+Nic+Bucla 2.5 mg/kg+1 mg/kg+600 nM gavage+IP 28 for As+1, 2 or 
4 days for Nic+Bucla

IP: Intraperitoneal; Dw: Deionized Water; Ns: Normal saline; DMSO: Dimethyl Sulfoxide; As: Arsenate sodium; Nic: Nicotine; Bucla: 
Bucladaseine. 

aAnimals received 0.5 mL Dw, banimals received 0.3 mL normal saline for either 1, 2, or 4 days (three groups), canimals received 0.3 mL of 
DMSO and deionized water (1:9) mixture for either 1, 2, or 4 days (three groups), danimals received 0.3 mL deionized water (first 28 days and 
then 0.5 mL normal saline and 0.3 mL of DMSO+deionized water (1:9) mixture for either 1, 2, or 4 days (three groups)
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for 28 days. In this context, chronic exposure to arsenic 
has previously been linked to learning and cognitive dis-
turbances [33]. Also, other studies have suggested that 
long-term exposure to arsenic could affect attention, in-
telligence, and the ability to comprehend spoken words 
[33, 34]. In the current study, the deficit in passive avoid-
ance memory in the arsenic-treated animals showed the 
deleterious effects of this agent on learning and memory 

functions, which is consistent with those found by previ-
ous studies. 

Multiple studies have reported increased levels of glu-
tamine in the motor cortex and hypothalamus following 
arsenic exposure [35, 36]. Also, arsenic inhibits the syn-
thesis, release, and uptake of acetylcholine, resulting in 
memory disturbance [27]. Conversely, the acetylcholine 

Table 4. Time dependent effects of bucladesine on the time latency (seconds) in avoidance memory in step-through model

Treatment Group 24 h 48 h 96 h 168 h

1-day
Controla 134.1±35.84 50.32±10.81 51.33±13.80 78.87±20.51

Bucladesine 164.6±38.96 115.3±39.32 144.0±40.71 191.9±37.19

2-day
Controlb 195.7±31.45 62.23±12.89 40.54±14.63 18.27±3.926

Bucladesine 255.6±32.36 235.3±29.35** 243.1±45.67* 170.3±33.51*

4-day
Controlc 183.2±54.73 102.5±28.33 155.1±33.86 34.35±14.11

Bucladesine 275.4±24.57 263.3±16.76** 274.5±20.88** 190.8±25.84**

*P<0.05 and **P< 0.01 showing a considerable difference compared to the control group. 

Values represent Means±SEM for each animal group. a, b, c Control groups received 0.3 mL DMSO and deionized water (1:9) mixture 
for either 1 (a), 2 (b), or 4 (c) days. 

Figure 1. Interaction of nicotine (1 mg/kg, IP) with bucladesine (600 nM, IP) on avoidance memory alterations induced by 
sodium arsenate (2.5 mg/kg, oral gavage) 24 h (a), 48 h (b), 96 h (c), and 168 h (d) after training in step-through task
*P<0.05, **P<0.01 and ***P<0.001 show significant differences from control group. #P<0.05, ##P<0.01 and ###P<0.001 show significant dif-
ferences from sodium arsenate -treated group. Values represent Means±SEM of 7 animals in each group. Control animals received 0.3 
mL deionized water (first 28 days) and then 0.3 mL normal saline and 0.3 mL of DMSO+deionized water (1:9) mixture for either 1, 2, 
or 4 days (three groups).
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plays a key role in neuronal function and influences vari-
ous types of memory and learning processes [37]. Fur-
ther, cholinergic neurons in the hippocampus have criti-
cal roles in cognitive function [38]. Since hippocampus 
plays a pivotal role in learning and memory modulation 
[39], learning and memory deficits in arsenic-treated 
animals might be associated with an impaired cholin-
ergic system. Evidence produced by other studies have 
suggested that arsenic can disturb anti-oxidants, causing 
oxidative stress in the brain [40-42]. Oxidative stress has 
been shown to inhibit or decrease acetylcholine recep-
tors in the hippocampus and frontal cortex in animals 
treated with arsenic [43]. 

Modulating the activity of Acetylcholine Esterase 
(AChE) plays an important role in the synaptic plastic-
ity and is another potential mechanism by which arse-
nic toxicity impairs neuronal functions [44]. A recent 
study has shown that both AChE activity and learning 
and memory functions diminished following exposure 
of experimental animals to arsenic [45]. Further, arsenic 
tends to react with the tyrosine residues in AChE, form-
ing a di-ester residue and leading to the inhibition of this 
enzyme. The inhibition results in the accumulation of 
acetylcholine in the synaptic clefts and desensitization of 
cholinergic receptors in the CNS [46, 47].

In the current study, we demonstrated the beneficial 
time-dependent effects of nicotine on avoidance memo-
ry retention. The beneficial effects have previously been 
demonstrated by several other studies [20, 48, 49]. Nico-
tinic receptors in the hippocampus regulate such cellu-
lar functions as neurotransmission, synaptic plasticity, 
memory function, and attention [50]. Other studies have 
asserted that working memory retention could be facili-
tated by acute or chronic nicotine exposure [51, 52]. It 
has been noted that nicotine promotes its cognitive ef-
fects through the release of multiple neurotransmit-
ters, including acetylcholine, dopamine, and glutamate 
[53]. Nicotine induces most of its effects via nicotinic 
acetylcholine receptors in the brain [48]. In a recent 
study, short-term administration of nicotine increased 
the extracellular levels of acetylcholine and dopamine, 
suggesting the existence of an interaction between the 
two systems [54]. The activation of PKA in response to 
cAMP is required to facilitate memory formation [55]. 
It has been reported that nicotinic receptors in the hip-
pocampus could stimulate PKA-I and -II, and MAPK 
or ERK1/2 signaling pathways, which are involved in a 
variety of neuronal processes [18, 56].

We further demonstrated that bucladesine, either indi-
vidually or combined with nicotine, could reverse the 

impaired avoidance memory caused by exposure to ar-
senic. Bucladesine, as a selective activator of PKA, plays 
a major role in the regulation of ChAT and VAChT in 
PC12 cells through the activation of the ERK signaling 
pathway in Ca2+ and PKA-dependent manners [56]. Evi-
dence shows that cholinergic functions are highly depen-
dent on the expression of VAChT and ChAT in the brain 
[57]. It has also been recognized that memory induced 
by fear (e.g. fear of shocks) is regulated by PKA-depen-
dent intracellular cascades [58]. 

Further, studies have suggested that cAMP plays a signifi-
cant role in memory formation [59]. In general, the function 
of PKA is essential for neuronal regulatory mechanisms and 
such cellular functions as neuronal development, growth 
and plasticity [60]. Various neurotransmitters and hor-
mones trigger signaling pathways mediated by cAMP as an 
intracellular secondary messenger [59]. The final target of 
cAMP in mammals is PKA as a serine-threonine kinase in-
volved in some forms of long-term potentiation and depres-
sion [61]. Moreover, the role of cAMP in synaptic plasticity 
and memory formation has been demonstrated [61]. Lastly, 
synaptic plasticity, which requires intracellular connections, 
plays a major role in the regulation of learning and memory 
functions [62].

Conclusions

In this study, we used sodium arsenate to induce impair-
ment in avoidance memory retention in mice. It demon-
strated the protective effects of nicotine and bucladesine 
against sodium arsenate-induced toxicity against memo-
ry retention. This study also showed that the co-adminis-
tration of nicotine and bucladesine enhanced avoidance 
memory retention in mice exposed to sodium-arsenate in 
a step-through model. The mechanism of action may be 
through reversing the destructive effects of sodium arse-
nate partly via the activation of cAMP/PKA pathway in 
the cholinergic system. As a limitation, in this study we 
did not assess the molecular pathways which might rep-
resent the protective actions of nicotine and bucladesine. 
It is recommended that the putative molecular pathways 
involved in the protective effects of nicotine and bucla-
desine be investigated in future studies, which may help 
discover new therapeutic agents for the management of 
memory impairment.
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