Write your message
Volume 11, Issue 1 (January-Fabruary 2017)                   IJT 2017, 11(1): 33-41 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohiseni M, Farhangi M, Agh N, Mirvaghefi A, Talebi K. Toxicity and Bioconcentration of Cadmium and Copper in Artemia Urmiana Nauplii. IJT 2017; 11 (1) :33-41
URL: http://ijt.arakmu.ac.ir/article-1-534-en.html
1- Department of Fisheries, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
2- Department of Fisheries, University of Tehran, Karaj, Iran. , medfarhangi@ut.ac.ir
3- PhD of Fisheries, Artemia and Aquatic Animals Research Center, University of Urmia, Urmia, Iran.
4- Department of Fisheries, University of Tehran, Karaj, Iran.
5- Department of Entomology, University of Tehran, Karaj, Iran.
Abstract:   (6014 Views)

Background: Artemia urmiana are small crustaceans that because of its non-selective filter feeder pattern potentially may absorb high level of heavy metals through their living environment. In this study, the effects of different levels of cadmium and copper on survival, catalase activity and metals bioconcentration rates in A. urmiana nauplii have been investigated.

Methods: The research was carried out in February 2012 at University of Tehran, Tehran, Iran. First experiment was conducted in nine concentrations with six replication, then LC50 and probable interactions between experimental metals were evaluated. In the second experiment, concentrations of metals absorbed by Artemia and catalase activity were measured based on the acute toxicity indices, including NOEC, LOEC and LC50 at individual and mixed concentrations.

Results: The toxicity of copper sulphate (LC50= 29.87) was 2.5 times greater than cadmium chloride (LC50=79.08) and the toxicity interaction between cadmium and copper was synergistic. The rate of copper uptake in Artemia was higher than cadmium and increased concentration of heavy metals significantly decreased the bioconcentration factor. Comparison of mixed and individual concentrations showed that cadmium significantly decreased copper uptake, while it seems that cadmium bioconcentration was improved consequently. Biochemical analysis showed that the catalase activity was affected undesirably in different individual and mixed concentrations; however, these changes were not significant.

Conclusion: A. urmiana nauplia seems to be highly resistant toward cadmium and copper in their culture medium and demonstrated excessive potential for uptake of heavy metals from their rearing environment.

Full-Text [PDF 453 kb]   (2792 Downloads)    
Type of Study: Research | Subject: Special

References
1. Giarratano E, Comoglio L, Amin O. Heavy metal toxicity in Exosphaeroma gigas (Crustacea, Isopoda) from the coastal zone of Beagle Channel. Ecotox Environ Safe 2007;68(3):451-62. [DOI:10.1016/j.ecoenv.2006.11.008]
2. Al-Yousuf M, El-Shahawi M, Al-Ghais S. Trace metals in liver, skin and muscle of Lethrinus lentjan fish species in relation to body length and sex. Sci Total Environ 2000;256(2):87-94. [DOI:10.1016/S0048-9697(99)00363-0]
3. Karadede H, Oymak SA, Ünlü E. Heavy metals in mullet, Liza abu, and catfish, Silurus triostegus, from the Atatürk Dam Lake (Euphrates), Turkey. Environ Int 2004;30(2):183-8. [DOI:10.1016/S0160-4120(03)00169-7]
4. Ruangsomboon S, Wongrat L. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus× C. gariepinus. Aquat. Toxicol 2006;78(1):15-20. [DOI:10.1016/j.aquatox.2006.01.015]
5. Mohiseni M, Asayesh S, Shafiee Bazarnoie S, Mohseni F, Moradi N, Matouri M, et al. Biochemical Alteration Induced by Cadmium and Lead in Common Carp via an Experimental Food Chain. Iran J Toxicol 2016;10(4):25-32.
6. Bagshaw JC, Rafiee P, Matthews CO, MacRae TH. Cadmium and zinc reversibly arrest development ofArtemia larvae. Bull Environ Contam Toxicol 1986;37(1):289-96. [DOI:10.1007/BF01607763]
7. Pandey AS, MacRae TH. Toxicity of organic mercury compounds to the developing brine shrimp, Artemia. Ecotoxicol Environ Saf 1991;21(1):68-79. [DOI:10.1016/0147-6513(91)90009-E]
8. Migliore L, Civitareale C, Brambilla G, Di Delupis GD. Toxicity of several important agricultural antibiotics to Artemia. Water Res 1997;31(7):1801-6. [DOI:10.1016/S0043-1354(96)00412-5]
9. Meyer JS, Boese CJ, Collyard SA. Whole-body accumulation of copper predicts acute toxicity to an aquatic oligochaete (Lumbriculus variegatus) as pH and calcium are varied. Comp Biochem Physiol Part C: Toxicol Pharmacol 2002;133(1):99-109. [DOI:10.1016/S1532-0456(02)00103-5]
10. Verriopoulos G, Moraitou-Apostolopoulou M, Xatzispirou A. Evaluation of metabolic responses ofArtemia salina to oil and oil dispersant as a potential indicator of toxicant stress. Bull Environ Contam Toxicol 1986;36(1):444-51. [DOI:10.1007/BF01623533]
11. Hadjispyrou S, Kungolos A, Anagnostopoulos A. Toxicity, bioaccumulation, and interactive effects of organotin, cadmium, and chromium on Artemia franciscana. Ecotox Environ Safe 2001;49(2):179-86. [DOI:10.1006/eesa.2001.2059]
12. Livingstone D. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 2001;42(8):656-66. [DOI:10.1016/S0025-326X(01)00060-1]
13. Smolders R, Baillieul M, Blust R. Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress. Aquat. Toxicol 2005;73(2):155-70. [DOI:10.1016/j.aquatox.2005.03.006]
14. Payne J, Malins D, Gunselman S, Rahimtula A, Yeats P. DNA oxidative damage and vitamin A reduction in fish from a large lake system in Labrador, Newfoundland, contaminated with iron-ore mine tailings. Mar Environ Res 1998;46(1):289-94. [DOI:10.1016/S0141-1136(98)00011-7]
15. Vinodhini R, Narayanan M. Cytoprotective effect of Nelumbo nucifera and Aegle marmelos in Common Carp (Cyprinus carpio L.) exposed to heavy metals. Int J Integr Biol 2009;7(2):124-9.
16. Kargın F, Çoğun H. Metal interactions during accumulation and elimination of zinc and cadmium in tissues of the freshwater fish Tilapia nilotica. Bull Environ Contam Toxicol 1999;63(4):511-9. [DOI:10.1007/s001289901010]
17. Simon O, Ribeyre F, Boudou A. Comparative experimental study of cadmium and methylmercury trophic transfers between the asiatic clam Corbicula fluminea and the crayfish Astacus astacus. Arch Environ Contam Toxicol 2000;38(3):317-26. [DOI:10.1007/s002449910042]
18. Chong K, Wang W-X. Comparative studies on the biokinetics of Cd, Cr, and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environ Pollut2001;115(1):107-21. [DOI:10.1016/S0269-7491(01)00087-2]
19. Wang W-X. Interactions of trace metals and different marine food chains. Mar. Ecol Prog Ser 2002;243:295-309. [DOI:10.3354/meps243295]
20. Jeffree RA, Warnau M, Teyssié J-L, Markich SJ. Comparison of the bioaccumulation from seawater and depuration of heavy metals and radionuclides in the spotted dogfish Scyliorhinus canicula (Chondrichthys) and the turbot Psetta maxima (Actinopterygii: Teleostei). Sci Total Environ 2006;368(2):839-52. [DOI:10.1016/j.scitotenv.2006.03.026]
21. Liao CY, Zhou QF, Fu JJ, Shi JB, Yuan CG, Jiang GB. Interaction of methylmercury and selenium on the bioaccumulation and histopathology in medaka (Oryzias latipes). Environ Toxicol 2007;22(1):69-77. [DOI:10.1002/tox.20236]
22. Mubiana VK, Blust R. Effects of temperature on scope for growth and accumulation of Cd, Co, Cu and Pb by the marine bivalve Mytilus edulis. Mar Environ Res 2007;63(3):219-35. [DOI:10.1016/j.marenvres.2006.08.005]
23. Van Campenhout K, Bervoets L, Blust R. Assimilation efficiencies of Cd and Zn in the common carp (Cyprinus carpio): effects of metal concentration, temperature and prey type. Environ Pollut 2007;145(3):905-14. [DOI:10.1016/j.envpol.2006.05.002]
24. Fisher NS, Stupakoff I, Sa-udo-Wilhelmy S, Wang W-X, Teyssié J-L, Fowler SW, et al. Trace metals in marine copepods: a field test of a bioaccumulation model coupled to laboratory uptake kinetics data. Mar Ecol Progr Seri 2000;194:211-8. [DOI:10.3354/meps194211]
25. Fisher NS, Hook SE. Toxicology tests with aquatic animals need to consider the trophic transfer of metals. Toxicol 2002;181:531-6. [DOI:10.1016/S0300-483X(02)00475-4]
26. Muyssen B, Janssen C. Age and exposure duration as a factor influencing Cu and Zn toxicity toward Daphnia magna. Ecotox Environ Safe 2007;68(3):436-42. [DOI:10.1016/j.ecoenv.2006.12.003]
27. Günther R. Contributions to the geography of Lake Urmi and its neighbourhood. Geog J 1899;14(5):504-23. [DOI:10.2307/1774539]
28. Sorgeloos p. The use of brine shrimp Artemia in aquaculture. In: Persoone G, Sorgeloos P, Roels O, Jasper E, editors. The brine shrimp Artemia. Ecology, culturing use in aquaculture. Wetteren: Universa Press;1980.p.25-26.
29. Hartl M, Humpf H-U. Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food Chem Toxicol 2000;38(12):1097-102. [DOI:10.1016/S0278-6915(00)00112-5]
30. Lan C-H, Lin T-S. Acute toxicity of trivalent thallium compounds to Daphnia magna. Ecotox Environ Safe 2005;61(3):432-5. [DOI:10.1016/j.ecoenv.2004.12.021]
31. Castritsi-Catharios J, Bourdaniotis N, Persoone G. A new simple method with high precision for determining the toxicity of antifouling paints on brine shrimp larvae (Artemia): First results. Chemosphere 2007;67(6):1127-32. [DOI:10.1016/j.chemosphere.2006.11.033]
32. Ferreira CSG, Nunes BA, de Melo Henriques-Almeida JM, Guilhermino L. Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotox Environ Safe 2007;67(3):452-8. [DOI:10.1016/j.ecoenv.2006.10.006]
33. Barahona M, Sanchez-Fortun S. Toxicity of carbamates to the brine shrimp Artemia salina and the effect of atropine, BW284c51, iso-OMPA and 2-PAM on carbaryl toxicity. Environ Pollut 1999;104(3):469-76. [DOI:10.1016/S0269-7491(98)00152-3]
34. Kungolos A, Samaras P, Kipopoulou A, Zoumboulis A, Sakellaropoulos G. Interactive toxic effects of agrochemicals on aquatic organisms. Water Sci Tech 1999;40(1):357-64.
35. Aebi H. Catalase in vitro. Meth enzym 1984;105:121-6. [DOI:10.1016/S0076-6879(84)05016-3]
36. Kruger NJ. The Bradford method for protein quantification. In: Walker JM, Editors. Methods in molecular biology. Humana press;1984. p.540-1.
37. Crisinei A, Delaunay L, Rossel D, Tarradellas J, Meyer H, Saiah H, et al. Cyst‐based ecotoxicological tests using Anostracans: Comparison of two species of Streptocephalus. Environ Toxicol Water Qual 1994;9(4):317-26. [DOI:10.1002/tox.2530090411]
38. Nałęcz-Jawecki G, Grabińska-Sota E, Narkiewicz P. The toxicity of cationic surfactants in four bioassays. Ecotox Environ Safe 2003;54(1):87-91. [DOI:10.1016/S0147-6513(02)00025-8]
39. Kungolos A, Aoyama I. Interaction effect, food effect, and bioaccumulation of cadmium and chromium for the system daphnia magna‐chlorella ellipsoidea. Environ Toxicol Water Qual 1993;8(4):351-69. [DOI:10.1002/tox.2530080402]
40. Sarabia R, Varó I, Amat F, Pastor A, Del Ramo J, Díaz-Mayans J, et al. Comparative toxicokinetics of cadmium in Artemia. Arch Environ Contam Toxicol 2006;50(1):111-20. [DOI:10.1007/s00244-005-7026-5]
41. Verslycke T, Vangheluwe M, Heijerick D, De Schamphelaere K, Van Sprang P, Janssen CR. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity. Aquat Toxicol 2003;64(3):307-15. [DOI:10.1016/S0166-445X(03)00061-4]
42. Brix K, Gerdes R, Adams W, Grosell M. Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch Environ Contam Toxicol 2006;51(4):580-3. [DOI:10.1007/s00244-005-0244-z]
43. Sarabia R, Del Ramo J, Varo I, Diaz‐Mayans J, Torreblanca A. Comparing the acute response to cadmium toxicity of nauplii from different populations of Artemia. Environ Toxicol Chem 2002;21(2):437-44. [DOI:10.1002/etc.5620210229]
44. Ferrer L, Andrade S, Asteasuain R, Marcovecchio J. Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahia Blanca estuary, Argentina. Ecotox Enviro Safet 2006;65(2):209-17. [DOI:10.1016/j.ecoenv.2005.06.010]
45. Barwick M, Maher W. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 2003;56(4):471-502. [DOI:10.1016/S0141-1136(03)00028-X]
46. Greco LL, Sánchez M, Nicoloso G, Medesani D, Rodríguez E. Toxicity of cadmium and copper on larval and juvenile stages of the estuarine crab Chasmagnathus granulata (Brachyura, Grapsidae). Arch Environ Contam Toxicol 2001;41(3):333-8. [DOI:10.1007/s002440010256]
47. Blust R, Kockelbergh E, Baillieul M. Effect of salinity on the uptake of cadmium by the brine shrimp Artemia franciscana. Mar Ecol Prog Ser 1992;84(3):245-54. [DOI:10.3354/meps084245]
48. Wright DA, Welbourn P. Environmental toxicology. New York: Cambridge University Press. 2002.p.630-1. [DOI:10.1017/CBO9780511805998]
49. Blust R, Van der Linden A, Verheyen E, Decleir W. Effect of pH on the biological availability of copper to the brine shrimp Artemia franciscana. Mar Biol 1988;98(1):31-8. [DOI:10.1007/BF00392656]
50. Chen JC, Lru PC. Accumulation of heavy metals in the nauplii of Artemia salina. J World Aqua Soc 1987;18(2):84-93. [DOI:10.1111/j.1749-7345.1987.tb00422.x]
51. Poldoski JE. Cadmium bioaccumulation assays. Their relationship to various ionic equilibriums in lake superior water. Environ Sci Tech 1979;13(6):701-6. [DOI:10.1021/es60154a015]
52. Erickson RJ, Nichols JW, Cook PM, Ankley GT. Bioavailability of chemical contaminations in aquatic systems. In: Di Giulio RT, Hinton DE, editors. The toxicology of fishes. CRC Press; 2007.p. 1101-2.
53. Di Giulio R, Meyer JN. Reactive Oxygen Species and Oxidative Stress. In: Di Giulio RT, Hinton DE, editors. The toxicology if fishes. CRC Press; 2007.p. 273-326.
54. Pan L, Zhang H. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp Biochem Physiol Part C: Toxicol Pharmacol 2006;144(1):67-75. [DOI:10.1016/j.cbpc.2006.06.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb