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Background: Monosodium Glutamate (MSG) is a flavour intensifier extensively used in the food industry; 

however, compelling scientific evidence has linked MSG to neurotoxicity. 
The present study aimed to investigate whether camel milk (CM) could suppress neurotoxicity caused by 

MSG in Wistar rats. 

Methods: Rats were grouped randomly (n=6 rats) into control, MSG (6 g/kg/day), MSG+CM (5 ml/kg/day 

after 15 minutes of MSG), and Recovery (MSG for the first 21 days, then left for another 21 days without 

any administration). All administrations were done orally for 21 consecutive days. 

Results: Exposure to MSG led to a drastic reduction in brain and body weight. It markedly reduced the 

activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX), and the levels of 

glutathione (GSH) in the brain. In contrast, pro-inflammatory cytokines, such as Interleukin-1β (IL-1β), 
Tumour Necrosis Factor-α (TNF-α), Myeloperoxidase, Nitric oxide (NO), and C-reactive protein (CRP), 

Nuclear factor kappa B (NF-κb), caspase-3, and lipid peroxidation, as demonstrated by the MDA level, 

were prominently increased. The brain functional marker acetylcholinesterase was significantly 
upregulated, and dopamine activity was prominently reduced. In contrast, CM supplementation attenuated 

the weight and biochemical changes. 

Conclusion: Camel milk supplementation demonstrates a therapeutic effect by alleviating MSG- induced 
neurotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. The findings suggest 

that CM can be a potent dietary strategy to mitigate the neurotoxic side effects of MSG. 

Keywords: Camel milk (CM), Inflammation, Monosodium glutamate (MSG), Neurotoxicity, Oxidative 

stress 
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Introduction

The ability of chemical, physical, or biological agents to 

produce adverse effects on the structural or functional parts 

of the central and peripheral nervous systems is referred to 

as neurotoxicity [1]. Neurotoxicity can lead to the disruption 

or death of neurons, which are the cells responsible for 

transmitting and processing signals throughout the nervous 

system. It is the primary contributor to neurodegenerative 

diseases such as Huntington's, Parkinson's, and Alzheimer's 

diseases [2]. Neurotoxicity can lead to the onset of 

neurocognitive impairments, ataxia, incontinence, loss of 

vision, behavioural problems, sexual dysfunction, etc [3]. 

Neurotoxicity can occur due to exposure to substances 

utilised in chemotherapy, medication treatments, and organ 

transplants, as well as toxic elements, such as mercury and 

lead, specific food items and food additives, pesticides, etc 

[4]. Monosodium glutamate (MSG), sodium glutamate, 

extensively used as a food additive, has been implicated to 

have neurotoxic effects [5,6].  

The MSG, composed of approximately 87.72% 

glutamate, is recognised as a significant contributor to 

neurotoxic effects [6,7].  Excessive glutamate in the 

extracellular space leads to neuronal death in the CNS by 

excessively stimulating glutamate receptors, a condition 

known as excitotoxicity [7,8]. 

The overexcitation of N-methyl-D-aspartate (NMDA) 

receptors results in an influx of calcium, which stimulates 

nitric oxide (NO) synthase, glyceraldehyde 3-phosphate 

dehydrogenase, and cysteine proteases, causing 

mitochondrial injury and leading to massive energy failure 

[9,10]. Moreover, the overactivation of the glutamatergic 

receptors increases the intracellular zinc level, which causes 

glycolytic dysfunction by interfering with the mitochondrial 

electron transport chain, inhibiting the citric acid cycle, and 

increasing the levels of reactive oxygen species [10]. 
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These procedures ultimately result in the death of neurons. 

Reports suggest that high levels of MSG consumption can 

result in cognitive decline by increasing the levels of 

acetylcholinesterase and decreasing dopamine levels 

[11,12]. Unfortunately, there is currently an unmet need to 

mitigate the neurotoxic side effects of MSG; therefore, 

finding an effective treatment that can be integrated into a 

diet to abrogate this effect is crucial. 

Camel milk (CM) is colloquially regarded as the 'white 

gold of the desert' due to its rich nutritional profile [13]. It is a 

highly nutritional milk rich in lactoferrins, lysozymes, 

minerals, proteins, vitamins, and immunoglobulins with 

lower fat and lactose content [14].  Furthermore, various 

studies have associated CM with the possible treatment of 

some pathophysiological disorders, including diabetes, 

autism, cancer, dropsy, asthma, anaemia, infections, and 

colitis [15,16]. However, the application of CM to abolish 

neurotoxicity is predominantly uninvestigated. Therefore, 

the present study explores the potential therapeutic impact of 

CM on neurotoxicity triggered by MSG. 

Materials and Methods 

Drugs and chemicals 

The MSG used in this research was obtained from Sigma 

Chemical in St. Louis, MO, USA. The CM was procured 

from the Camel Research Institute, King Faisal (Al-Ahsa, 

Saudi Arabia). All chemicals and drugs used for this study 

were obtained from reputable companies and were of the 

highest analytical-grade standards. 

Animals 

A total of 24 male Wistar rats, weighing 185 and 205 

grams, were obtained from an accredited farm house in 

Nigeria. The rats were then kept in standard cages that 

provided good environmental conditions. They received a 

nutritional regimen of standard rat pellets (Tripod Feed 

Limited, Nigeria) and water ad libitum. The Ethical Review 

Board of the Physiology Department approved the research 

protocol issued on 10 January 2024, under the Ethical 

Approval Number EKSU/P100/2024/01/002. The globally 

recognised guidelines for the care and use of laboratory 

animals, established by the Canadian Council on Animal 

Care and the Guidelines for Protocol Review (NRC, 1997), 

were strictly followed. The experiment was also in 

accordance with the guidelines provided by the National 

Institutes of Health regarding the care and use of laboratory 

animals. 

MSG preparation 

In this research, a dosage of 6 g/kg body weight (bw) of 

MSG was administered [17]. A stock solution was prepared 

by dissolving 22.0 g of MSG in 1 mL of distilled water. 

Resulting in a concentration of 600 mg/ml. 

Experimental design 

Following a two-week acclimatisation period, the 

animals were randomly assigned to four groups. (n=6 

rats each), structured as follows: 

Group A (Control): Distilled water (1 ml/kg bw, orally) 

was administered for 21 days Group B (MSG Control): 

MSG 6 g/kg bw for 21 days, administered orally 

Group C (MSG+CM): Received CM (5 ml/kg bw, 

orally) 15 minutes after MSG administration Group D 

(Recovery): MSG was administered for the first 21 days, 

then left for another 21 days without any administration. 

All rats fasted 12 hours overnight were weighed and 

euthanised using ketamine (40 mg/kg)/xylazine (4 mg/kg) 

injected intraperitoneally 24 hours after the last 

administration (day 23). The brain was extracted, 

weighed, and documented. Post-weighing, the brain was 

precisely bisected into two equal hemispheres [18]. A 

portion of the brain tissue was homogenised in a cold 

phosphate-buffered solution (1:5) using a glass 

homogeniser, followed by centrifugation at 10,000×g, 4°C 

for 15 minutes to separate the supernatant from the 

solution. Both portions were preserved at -20°C for 

subsequent biochemical assays of oxidative and 

inflammatory markers. The other brain portions were 

fixed sufficiently with 10% neutral buffer formalin and 

preserved at ambient temperature for histopathological 

evaluation. 

Determination of Lipid peroxidation, GSH, antioxidant 

activities, and Analysis of the Brain Inflammatory 

Markers 

Lipid peroxidation was determined and expressed as the 

Malondialdehyde (MDA) level using the MDA ELISA kit 

(Bioassay Tech, China) following the manufacturer's 

instructions. MDA level was reported in micromoles per 

gram of tissue (µM/g protein). 

The concentrations of Superoxide dismutase (SOD), 

Glutathione peroxidase (GPx), Glutathione S- S-

transferase (GST), and Catalase were assessed using their 

respective rat ELISA kits (MyBioSource, Inc., US). It was 

reported in units per milligram of protein (U/mg protein). 

The glutathione (GSH) concentration was evaluated using 

the procedure described by Sedlak and Lindsay [19]. 

The Inflammatory markers (TNFα, IL-1β, 

Myeloperoxidase, CRP, and NF-kB) were assessed 

utilising the enzyme-linked immunosorbent assay 

(ELISA) technique with a standard commercial kit for rats 

(MyBioSource, Inc., US) according to the producer’s 

guide. Moreover, NO levels were evaluated utilising a 

commercial kit which contains Griess reagents (R&D 

Systems, USA) based on the approach outlined by Griess 

et al [20]. Determination of the acetylcholine esterase and 

dopamine levels 

The activity of the enzyme Acetylcholine Esterase 

(AChE) was analysed using rat ELISA kits from Shanghai 

Sunred Technology Company, following the 

manufacturer's instructions. Dopamine levels were 

determined using the ELISA kits supplied by USCN Life 
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Inc., Wuhan, China, according to the producer’s guidelines. 

Evaluation of Caspase-3 activity 

The eluate formed from the homogenisation and 

centrifugation of brain samples was utilised for the ELISA 

technique to measure caspase-3 activity. Following the 

manufacturer's guidelines, each sample was analysed using a 

rat caspase-3 ELISA kit from USCN Life Business Co, USA. 

Histopathological analysis 

Each group's cerebellar tissue sample was separated and 

accurately preserved in 10% neutral formalin. Then, the tissue 

was subjected to dehydration using a graduated ethanol 

series, cleared with xylene, coated in paraffin wax, sliced into 

5 μm sections with a microtome, and stained using 

hematoxylin and eosin. The resulting sections were evaluated 

by an expert in the field using a light microscope to identify 

histopathological changes [21]. 

Statistical analysis 

Data analysis was conducted using the GraphPad Prism 

software (version 9.0, GraphPad Software, Inc.). The 

findings are presented as mean values along with standard 

deviation (mean±SD). To compare multiple groups, a 

one-way analysis of variance (ANOVA) and a Tukey post 

hoc test were conducted. The threshold for statistical 

significance was established at p<0.05. 

Results  

Effect of CM on body weight and brain weight in MSG-

exposed rats 

The result of the effect of CM on IBW, FBW, BWC, and 

BrW in MSG-exposed rats is depicted in Table 1. The 

IBW and FBW showed no significant (p>0.05) difference 

across all the groups of rats. The BWC showed a notable 

(p<0.05) decrease and an increase in rats from Groups B 

and C when compared with control rats, a prominent 

(p<0.05) increase in Groups C and D rats when compared 

with Group B, and a significant (p<0.05) decrease in 

Group D rats when compared with Group C rats. 

Meanwhile, the BrW showed a significant (p<0.05) 

decrease in Groups B and C rats compared with Group A 

rats, and a significant (p<0.05) increase in Groups C and 

D rats compared with Group B rats.

 

Table 1. Effect of CM on Body weight and brain weight in rats exposed to MSG 

 

Group 

Group A Group B Group C Group D 

(Control) (MSG-exposed) (MSG-exposed+CM) (MSG-exposed-R) 

IBW (g) 193.00±10.58 199.70±7.57 196.70±4.73 193.00±3.61 

FBW (g) 216.70±11.93 210.30±7.64 230.30±5.51 215.00±4.58 

BWC (g) 23.67±1.53 10.67 ±1.53* 33.67 ±1.53*+ 22.00±1.00+& 

BrW (g) 2.07±0.12 1..33±0.06* 1.63±0.06*+ 1.87±0.12+ 

Values are mean±SD of three replicates, where *p<0.05 vs control, +p<0.05 vs MSG-exposed, and &p<0.05 vs MSG-exposed+CM, and IBW, FBW, BWC, 

and BrW were initial body weight, final body weight, body weight change, and brain weight, respectively. 

 

Effect of CM on Brain MDA, CAT, and SOD in MSG-

exposed rats 

The results of brain MDA, CAT, and SOD are expressed in 

Figure 1. The results of brain MDA (Figure 1A) showed a 

significant (p<0.05) increase in all other groups of rats 

compared with the control rats, and a significant (p<0.05) 

decrease in Groups C and D rats compared to the Group B rats. 

However, the brain CAT result (Figure 1B) revealed a notable 

(p<0.05) decrease in all other groups of rats compared to the 

control rats, and a significant (p<0.05) increase in the rats of 

Groups C and D when compared with Group B rats. Similarly, 

the result of brain SOD (Figure 1C) revealed a significant 

(p<0.05) decrease in Groups B and D rats when compared with 

the control rats, and a significant (p<0.05) increase in Groups 

C and D rats when compared with Group B rats. 

Effect of CM on Brain GSH, GST, and GPx in MSG-

exposed rats 

The results of brain Glutathione S-transferase (GST), 

GPx, and GSH were expressed in Figure 2. The results of 

brain GSH (Figure 2A) showed a significant (p<0.05) 

decrease in Groups B and D rats compared with the 

control rats, and a significant (p<0.05) increase in Groups 

C and D rats compared with Group B rats. Similarly, the 

result of brain GST and GPx (Figure 2 B and 2 C) revealed 

a prominent (p<0.05) decrease in all other groups of rats 

when compared with the control rats, and a significant 

(p<0.05) increase in Group C and D rats when compared 

with Group B rats.
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Figure 1. Effect of CM on Brain MDA, CAT, and SOD in MSG-exposed rats. 

Values are mean±SD of three replicates, where *p<0.05 vs control, +p<0.05 vs MSG-exposed, and & p<0.05 vs MSG-exposed+CM. 

 

 
Figure 2. Effect of CM on Brain GSH, GST, and GPx in MSG-exposed rats. 

Values are mean±SD of three replicates, where *p<0.05 vs control, +p<0.05 vs MSG-exposed, and &p<0.05 vs MSG-exposed+CM. 

 

Effect of CM on Brain MPO, NO, and CRP in MSG-exposed 

rats 

The results of Brain MPO, NO, and CRP were expressed 

in Figure 3. The result of brain MPO and CRP (Figure 3A 

and Figure 3C) demonstrated a significant (p<0.05) increase 

in all other groups of rats when compared with the control 

rats, and a significant (p<0.05) decrease in Groups C and 

D rats when compared with the Group B rats. Similarly, 

the result of testicular NO (Figure 3B) revealed a 

significant (p<0.05) increase in Group B rats only when 

compared with the control rats, and a significant (p<0.05) 

decrease in Group C and D rats when compared with 

Group B rats.
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Figure 3. Effect of CM on Brain MPO, NO, and CRP in MSG-exposed rats. 

Values are mean±SD of three replicates, where *p<0.05 vs control, +p<0.05 vs MSG-exposed, and &p<0.05 vs MSG-exposed+CM. 

 

Effect of CM on Brain TNF-α, IL-1β, and NF-kβ in MSG-

exposed rats 

The findings for brain interleukin-1β (IL-1β), tumor 

necrosis factor-α, and nuclear factor-kappa B are expressed 

in Figure 4. The results of brain IL-1β, TNF-α, and NF-kβ 

(Figure 4 A, B, and C) all demonstrated a significant 

(p<0.05) increase in all other groups of rats when 

compared with the control rats, and a significant (p<0.05) 

decrease in Groups C and D rats when compared with the 

Group B rats.

 

 
Figure 4. Effect of CM on Brain TNF-α, IL-1β, and NF-kβ in MSG-exposed rats. 

Values are mean±SD of three replicates, where *p<0.05 vs control, +p<0.05 vs MSG-exposed, and &p<0.05 vs MSG-exposed+CM. 

 

Effect of CM on Brain AcHE and Dopamine in MSG-

exposed rats 

The results for brain AcHE and dopamine are indicated in 

Figure 5. The result of AcHE (Figure 5A) revealed a 

significant (p<0.05) increase in Group B rats when 

compared with the control rats, and a prominent (p<0.05) 

decrease in Groups C and D rats when compared with 

Group B rats. The result of dopamine (Figure 5B) showed 

a significant (p<0.05) increase in Group B rats when 

compared with the control rats, and a significant (p<0.05) 

decrease in Group C rats when compared with Group B 

rats.
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Figure 5. Effect of CM on Brain AcHE and Dopamine in MSG-exposed rats. 

Values are mean±SD of three replicates, where *p<0.05 vs control, +p<0.05 vs MSG-exposed, and &p<0.05 vs MSG-exposed+CM. 

 

Effect of CM on Brain Caspase-3 in MSG-exposed rats 

The results of brain caspase-3 are presented in Figure 6. 
The results revealed a significant (p<0.05) increase in Group 
B rats when compared with the control rats and a significant 
(p<0.05) decrease in Groups C and D rats when compared 
with Group B rats. 

Effect of CM on Brain Histology in MSG-exposed rats 

Photomicrograph (Figure 7 [A, B, C, and D]) demonstrated 

cerebellum histomorphology made up of its classical 

layers: the Grey matter consisting of the outer molecular 

layer (OML), Purkinje layer (PL), granular layer (GL), all 

dispersed within the neuropil (NP) and the White matter 

composed of neuronal axons and Glial cells. The blood 

capillaries appear normal and unremarkable. Features 

were consistent with normal cerebellar tissue.

 

 
Figure 6. Effect of CM on Brain Caspase-3 in MSG-exposed rats. 

Values are mean±SD of three replicates, where *p<0.05 vs control and +p<0.05 vs MSG-exposed. 
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A. MSG-exposed B. MSG-exposed 

  
C. MSG-exposed+CM D. MSG-exposed-R 

Figure 7. Photomicrograph of brain sections stained by H & E (Mg×400). 

Where OML=Outer molecular layer, PL=Purkinje layer, GL=Granular layer, and NP=Neuropil. 

 

Discussion 

The MSG is a commonly used flavour enhancer in food 

industries worldwide. However, recent neurobiological 

research has raised significant concerns about its potential 

neurotoxic effects [5,6]. The brain is particularly vulnerable 

to MSG-induced damage due to its high metabolic rate and 

limited antioxidant capacity [22]. While complete avoidance 

of MSG may be impractical, there is a substantial need for an 

effective strategy to address MSG's neurotoxic effects. 

Therefore, the present study investigated CM's therapeutic 

potential against MSG-induced pro-inflammation and 

oxidative neurotoxicity in rats. 

The results demonstrated that MSG exposure led to 

substantial neurological alterations across multiple 

biochemical and physiological parameters. Our findings 

revealed that MSG-exposed rats had the least body weight 

change (BWC), which does not support the controversy that 

MSG causes obesity but is consistent with an earlier report 

that MSG suppresses weight gain [23,24]. Moreover, it led to 

a significant reduction in brain weight compared with 

controls, suggesting that MSG can cause metabolic 

disruptions and potential neuronal damage [25]. Notably, 

CM administration mitigated these changes and showed 

promising recovery in brain weight, suggesting a potential 

neuroprotective effect. 

Oral administration of Msg (6 g/kg bw) resulted in a 

prominent increase in inflammatory markers, including IL-

1β, TNF-α, MPO, NO, CRP, and NF-kβ in MSG-exposed 

rats, indicating a robust inflammatory response in the brain 

[26]. This inflammatory cascade is consistent with previous 

studies highlighting glutamate's excitotoxic potential, which 

can lead to neuronal damage through excessive receptor 

stimulation and subsequent cellular stress [27]. 

Oxidative stress markers further substantiated the 

neurotoxic effects of MSG. Its administration 

significantly elevated brain oxidative stress markers, 

particularly MDA levels, which indicate lipid 

peroxidation, while depleting antioxidant enzymes (CAT, 

SOD, GSH, GST, and GPx). These findings align with 

previous studies demonstrating MSG's ability to induce 

oxidative stress through excessive free radical generation 

[28,29]. 

Acetylcholine and dopamine play crucial roles in 

cognitive regulation. In the study, the neurotransmitter 

profile was significantly altered in MSG-exposed rats. 

There was a prominent increase in acetylcholinesterase 

(AChE) activity and a significant decrease in dopamine 

levels, suggesting neurotransmitter dysregulation. These 

changes are consistent with previous studies linking MSG 

consumption to cognitive impairment and neurochemical 

imbalances [30]. 

Caspase-3, an executioner protease, functions critically in 

the process of programmed cell death. The elevated 

caspase-3 activity in MSG-exposed rats further indicates an 

active apoptotic process, highlighting the potential for 

neuronal death [31]. Histological examination did not show 

significant alterations in cerebellar architecture with MSG 

exposure. This lack of structural alteration may suggest that 

the neurotoxic effects of MSG at the given dose and 

duration manifest predominantly at the molecular level 

before progressing to overt morphological damage, as 

earlier noted by Mekkawy et al. (2020), who reported that 
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MSG administration at 6 mg/g bw led to cerebellar histological 

disruption after 60 days [32]. Similar observations have been 

reported in earlier studies, which noted the time-dose 

dependent nature of histological alterations, where 

biochemical disruptions preceded histological changes, 

signifying the sensitivity of biochemical assays in detecting 

early toxic events [33,34]. This indicates a potential window 

for early therapeutic intervention. 

On the other hand, CM administration significantly 

attenuated these adverse effects. Its administration 

significantly abated the inflammatory response, reducing IL-

1β, tumour necrosis factor-α (TNF-α), and nuclear factor-

kappa B concentrations to near-control levels. This anti-

inflammatory effect can be attributed to CM's rich bioactive 

compounds, including lactoferrins, immunoglobulins, and 

antioxidant proteins [35]. The milk's ability to modulate 

inflammatory pathways suggests a potential therapeutic 

mechanism in mitigating neuroinflammation. 

Furthermore, treatment with CM substantially decreased 

the MDA levels and prominently restored the activities of 

antioxidant enzymes in the brain. This study indicates the 

antioxidant property of CM, which aligns with previous 

studies [36,37]. CM supplementation effectively normalised 

AChE activity and dopamine levels, suggesting its potential 

to preserve neurotransmitter function and cognitive 

processes. This effect may be attributed to CM's bioactive 

peptides and proteins, which have been shown to modulate 

neurotransmitter systems and support synaptic function [38]. 

The significant reduction in caspase-3 activity following CM 

administration indicates its anti-apoptotic properties, 

potentially through the regulation of death signalling 

pathways [39]. The recovery group showed partial 

improvement in various parameters compared with the 

MSG-exposed group, indicating the brain's inherent capacity 

for recovery. However, some markers, particularly 

inflammatory markers and indicators of oxidative stress, 

including neurotransmitter profiles, remained elevated 

compared to the CM-treated group. This issue suggests that 

natural recovery alone may be insufficient for the complete 

resolution of MSG-induced neurotoxicity. This observation 

aligns with previous studies on neural tissue recovery 

following toxic insult [40]. By implication, this finding 

suggests that CM can be a reliable and efficient treatment 

strategy for MSG-induced neurotoxicity. 

Conclusions 

In conclusion, the study suggests that CM 

supplementation can mitigate the neurotoxicity caused by 

MSG through antioxidant, anti-inflammatory, and anti-

apoptotic mechanisms, potentially improving cognitive 

functions and integrity. Therefore, CM may serve as a 

therapeutic agent amenable to a diet that can neutralise 

MSG's neurotoxic effect. 
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