Write your message
Volume 10, Issue 4 (July-August 2016)                   IJT 2016, 10(4): 33-39 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shokoohi R, Azizi S, Ghiasian S A, Poormohammadi A. Biosorption of Pentachlorophenol from Aqueous Solutions by Aspergillus Niger Biomass. IJT 2016; 10 (4) :33-39
URL: http://ijt.arakmu.ac.ir/article-1-461-en.html
1- Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamedan, Iran.
2- M.Sc of Environmental Health Engineering, Student Research Center, Hamadan University of Medical Sciences, Hamedan, Iran.
3- Department of Mycology and Parasitology, Hamadan University of Medical Sciences, Hamedan, Iran. , s.a.ghiasian@umsha.ac.ir
4- Ph.D. by Research Student of Environmental Health Engineering, Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Abstract:   (4413 Views)

Background: This study aimed to investigate the biosorption of pentachlorophenol on Aspergillus niger biomass as a method for removal of pentachlorophenol from aqueous solutions.

Methods: Modified A. niger biomass with NaOH was used to absorb the pentachlorophenol. The impacts of various experimental parameters like primary pentachlorophenol concentration, pH of the solution, contact time, and biomass dosage on the biosorption of pentachlorophenol were investigated.

Results: The correlation of contact time, pH and initial concentration with the biosorption of pentachlorophenol by A. niger biomass was statistically significant (P<0.001). Pentachlorophenol removal increased with decreasing pH of the solution and the maximum efficiency was obtained at pH=3. The equilibrium adsorption capacity was increased from 4.23 to 11.65 mg/g by increasing initial pentachlorophenol concentration from 10 to 40 mg/L, while pentachlorophenol removal efficiency decreased from 87 to 55%. Both Langmuir and Freundlich isotherms efficiently described adsorption equilibrium of pentachlorophenol on A. niger biomass. Correlation coefficients for the second order kinetic model were almost equal to one.

Conclusion: A. niger biomass can be used to reduce the toxicity of aqueous solutions containing pentachlorophenol in acidic pH conditions.

Full-Text [PDF 760 kb]   (1556 Downloads)    
Type of Study: Research | Subject: General

References
1. Asgari G, Seidmohammadi A, Chavoshani A. Pentachlorophenol removal from aqueous solutions by microwave/persulfate and microwave/H2O2: a comparative kinetic study. Iran J Environ Health Sci Eng 2014; 12: 94. [DOI:10.1186/2052-336X-12-94]
2. Asgari G, Seidmohammadi A, Chavoshani A, Rahmani AR. Microwave/H2O2 efficiency in pentachlorophenol removal from aqueous solutions. J Res Health Sci 2014; 14(1): 36–9.
3. Asgari G, Samiee F, Ahmadian M, Poormohammadi A, Solimanzadeh B. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon. Appl Water Sci 10.1007/s13201-014-0254-y. 2014. [DOI:10.1007/s13201-014-0254-y]
4. Kwan C, Chu W. Photodegradation of 2, 4-dichlorophenoxyacetic acid in various iron-mediated oxidation systems. Water Res 2003; 37(18):4405-12. [DOI:10.1016/S0043-1354(03)00393-2]
5. Humans IWGotEoCRt, Cancer IAfRo, Organization WH. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Vol 71: IARC, International Agency for Research on Cancer; 1999.
6. Rubilar O, Tortella G, Cuevas R, Cea M, Rodríguez-Couto S, Diez M. Adsorptive Removal of Pentachlorophenol by Anthracophyllum discolor in a Fixed-Bed Column Reactor. Water Air Soil Pollut 2012; 223(5): 2463-72. [DOI:10.1007/s11270-011-1039-7]
7. Pagnanelli F, Papini MP, Toro L, Trifoni M, Veglio F. Biosorption of metal ions on Arthrobacter sp.: Biomass characterization and biosorption modeling. Environ Sci Technol 2000; 34(13): 2773-8. [DOI:10.1021/es991271g]
8. Rao J, Viraraghavan T. Biosorption of phenol from an aqueous solution by Aspergillus niger biomass. Bioresource Technol 2002; 85 (2):165-71. [DOI:10.1016/S0960-8524(02)00079-2]
9. Srivastava S, Ahmad AH, Thakur IS. Removal of chromium and pentachlorophenol from tannery effluents. Bioresource Technol 2007; 98(5):1128-32. [DOI:10.1016/j.biortech.2006.04.011]
10. Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 1916;38(11):2221-95. [DOI:10.1021/ja02268a002]
11. Freundlich H. Over the adsorption in solution. J Phys Chem 1906;57:385-470.
12. Kumar NS, Min K. Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem Engin J 2011; 168(2): 562-71. [DOI:10.1016/j.cej.2011.01.023]
13. Denizli A, Cihangir N, Rad AY, Taner M, Alsancak G. Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium. Process Biochem 2004; 39(12): 2025-30. [DOI:10.1016/j.procbio.2003.10.003]
14. Mathialagan T, Viraraghavan T. Biosorption of Pentachlorophenol by Fungal Biomass from Aqueous Solutions: a Factorial Design Analysis. Environ Technol 2005; 26(5): 571-80. [DOI:10.1080/09593332608618542]
15. Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 2002; 38(1): 89-99. [DOI:10.1016/S0032-9592(02)00051-1]
16. Aksu Z, Akpınar D. Modelling of simultaneous biosorption of phenol and nickel (II) onto dried aerobic activated sludge. Separation Purification Technol 2000; 21(1–2): 87-99. [DOI:10.1016/S1383-5866(00)00194-5]
17. Hyun S, Lee LS. Hydrophilic and hydrophobic sorption of organic acids by variable-charge soils: effect of chemical acidity and acidic functional group. Environ Sci Technol 2004;38(20):5413-9. [DOI:10.1021/es0494914]
18. Huang C, Westman D, Quirk K, Huang J, Morehart AL. Removal of cadmium (II) from dilute aqueous solutions by fungal biomass. Particulate Sci Technol 1988;6(4):405-19. [DOI:10.1080/02726358808906514]
19. Aksu Z, Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manag 2001;21(8):695-702. [DOI:10.1016/S0956-053X(01)00006-X]
20. Mathialagan T, Viraraghavan T. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresource Technol 2009;100(2):549-58. [DOI:10.1016/j.biortech.2008.06.054]
21. Antizar-Ladislao B, Galil N. Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer. Water Res 2004;38(2):267-76. [DOI:10.1016/j.watres.2003.09.032]
22. Ergene A, Ada K, Tan S, Katırcıoğlu H. Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: Equilibrium and kinetic modeling studies. Desalination 2009;249(3):1308-14. [DOI:10.1016/j.desal.2009.06.027]
23. Sun Y, Chen J-L, Li A-M, Liu F-Q, Zhang Q-X. Adsorption of phenol from aqueous solution by aminated hypercrosslinked polymers. Adsorption Sci Technol 2005;23(4):335-46. [DOI:10.1260/0263617054769996]
24. Liu F-Q, Xia M-F, Yao S-L, Li A-M, Wu H-S, Chen J-L. Adsorption equilibria and kinetics for phenol and cresol onto polymeric adsorbents: Effects of adsorbents/adsorbates structure and interface. J Hazard Mater 2008;152(2):715-20. [DOI:10.1016/j.jhazmat.2007.07.071]
25. Deng S, Ma R, Yu Q, Huang J, Yu G. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J Hazard Mater 2009; 165(1-3):408-14. [DOI:10.1016/j.jhazmat.2008.10.029]
26. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe: Kungliga Svenska vetenskapsakademiens. Handlingar 1898; 24(4):1-39.
27. Sathishkumar M, Binupriya A, Kavitha D, et al. Adsorption potential of maize cob carbon for 2, 4-dichlorophenol removal from aqueous solutions: equilibrium, kinetics and thermodynamics modeling. Chem Engin J 2009;147(2):265-71. [DOI:10.1016/j.cej.2008.07.020]
28. Ho Y, McKay G. Pseudo-second order model for sorption processes. Process Biochem 1999; 34(5):451-65. [DOI:10.1016/S0032-9592(98)00112-5]
29. Önal Y. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot. J Hazard Mater 2006; 137(3):1719-28. [DOI:10.1016/j.jhazmat.2006.05.036]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb