Volume 11, Issue 4 (July-August 2017)                   IJT 2017, 11(4): 13-17 | Back to browse issues page


XML Print


1- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. , hedayati@gau.ac.ir
2- Department of Fisheries, Khorramshahr Marine Science and Technology University, Khorramshahr, Iran.
3- Department of Fisheries, Urmia University, Urmia, Iran.
Abstract:   (4919 Views)

Background: The expansion of herbicide used in aquatic ecosystems as well as in terrestrial if is not properly controlled may produce harmful effects on freshwater fisheries. Residue limits of these agricultural chemicals in tropical fishery waters should be established. The aim of this study was to determine the acute toxicity of butachlor and pertilachlor as potential dangerous herbicides to assess mortality effects of these chemicals to the Mosquito Culex quinquefasciatus.

Methods: This study was carried out in Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran at summer 2013. Culex samples were exposed to different concentrations of butachlor and pertilachlor (0-200ppm for butachlor and pertilachlor) for 96 h.

Results: The low toxicity of LC50s obtained for butachlor (23.81±0.04) and pertilachlor (27.97±0.05) indicate that butachlor and pertilachlor were lowly toxic to Mosquito Cu. quinquefasciatus.

Conclusion: Although pretilachlor and butachlor are low toxic but pretilachlor is less toxic in field conditions, these data are useful to potential ecosystem risk assessment.

Full-Text [PDF 134 kb]   (1283 Downloads)    
Type of Study: Research | Subject: Special

References
1. Langston WJ. Toxic effects of metals and the incidence of metal pollution in marine ecosystems. In: Firness RW, Rainbow PS, editors. Heavy Metals in the Marine Environment. CRC Press: Boca Raton, FL; 1990.p.101–22.
2. Adhikary SP, Sahu JK. Internation of cyanobacteria of rice fields to agrochemicals. Algal Biotechnology. Trivedi, Pointer Publishers: Jaipur, India 2001.p. 98-115.
3. Arnon A. The wealth of India: Raw material of volume IV, supplement Fish and Fisheries, CSIR, New Delhi.1962.p.132-3.
4. Miller GG, Sweet LI, Adams JV, Omann GM, Passino-Reader DR, Meier PG. In vitro toxicity and interactions of environmental contaminants (Arochlor 1254 and mercury) and immunomodulatory agents (lipopolysaccharide and cortisol) on thymocytes from lake trout (Salvelinus namaycush). Fish Shellfish Immunol 2002;13(1):11-26. [DOI:10.1006/fsim.2001.0381]
5. Galloway T, Handy R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 2003;12(1-4):345-63. [DOI:10.1023/A:1022579416322]
6. Tinoco-Ojanguren R, Halperin DC. Poverty, production, and health: inhibition of erythrocyte cholinesterase via occupational exposure to organophosphate insecticides in Chiapas, Mexico. Arch Environ Health: Int J 1998;53(1):29-35. [DOI:10.1080/00039899809605686]
7. Capel PD, Larson SJ, Winterstein TA. The behaviour of 39 pesticides in surface waters as a function of scale. Hydrol Processes 2001;15(7):1251-69. [DOI:10.1002/hyp.212]
8. Hedayati SAA, Farsani HG, Naserabad SS, Hasan M. Acute Toxicity and Behavioral Changes Associated with Diazinon in Rutilus rutilus caspicus and Hypophthalmicthys molitrix. Iran J Toxicol 2015;9(30): 1354-9.
9. Hotos G, Vlahos N. Salinity tolerance of Mugil cephalus and Chelon labrosus (Pisces: Mugilidae) fry in experimental conditions. Aquaculture 1998;167(3):329-38. [DOI:10.1016/S0044-8486(98)00314-7]
10. Sadeghi A, Hedayati A. Investigation of Acute Toxicity Diazinon, Deltamethrin, Butachlor and pretilachlor on Zebra Cichlid (Cryptoheros nigrofasciatus). Iran J Toxicol 2014;8(25):1086-92.
11. Larkin DJ, Tjeerdema RS. Fate and effects of diazinon. Rev Environ Contam Toxicol 2000;166:49-82.
12. Willis GH, McDowell LL. Pesticides in agricultural runoff and their effects on downstream water quality. Environ Toxicol Chem 1982;1(4):267-79. [DOI:10.1002/etc.5620010402]
13. Díaz C, Enriquez D, Bisset J. Status of resistance to insecticides in field strains of the Blatella germanica species (Dictyoptera: Blattellidae) from Pinar del Rio municipality. Rev Cubana Med Trop 2002;55(3):196-202.
14. Hodgson E, Goldstein J. Introduction to biochemical toxicology. Pestic Biochem Physiol 1984; 22:337-45.
15. Dauterman WC, Hodgson E. Biochemistry of insects. New York: Academic Press; 1978.p.541-77. [DOI:10.1016/B978-0-12-591640-0.50018-2]
16. Raghavendra K, Singh S, Subbarao SK, Dash A. Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J Med Res 2009; 130: 74-7.
17. Farah MA, Ateeq B, Ali MN, Sabir R, Ahmad W. Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms. Chemosphere 2004;55(2):257-65. [DOI:10.1016/j.chemosphere.2003.10.063]
18. Rossi R, Carpita A, Piccardi P, Miyamoto J, Kearney P. Pesticide Chemistry: Human Welfare and the Environment. Miyamoto J, Kearney, PC Eds; 1983.
19. Wang Y, Cheng C, Liu Y, Chiang H. Residues of three herbicides in paddy water and their danger level to carp. J Chinese Agric Chem Society 1991;29(2):195-6.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.