:: Volume 11, Issue 2 (March-April 2017) ::
IJT 2017, 11(2): 39-44 Back to browse issues page
Investigating the Agent of Temperature into Acute Toxicity (LC50 96h) of Edifenphos in Rutilus Frisii Kutum (Kamensky, 1901)
Saeid Shahbazi Naserabad *, Alireza Mirvaghefi , Ghasem Rashidiyan , Narges Rostamian , Hamed Ghafari Farsani
MSc of Aquatic Ecology, Young Researchers and Elite Club,Yasooj Branch, Islamic Azad University, Yasooj, Iran. , saeid.shahbazi@alumni.ut.ac.ir
Abstract:   (1062 Views)

Background: Edifenphos, a kind of organophosphate toxins, is used as agricultural fungicides in rice fields. This study was aimed to investigate the effect of temperature on lethal concentration of exposure to edifenphos on Rutilus frisii kutum (Caspian kutum).

Methods: The experiment was carried out in static condition and based on instructions of OECD within 10 d under controlled water physicochemical factors. Dissolved oxygen was fixed on 7-7.5 ppm, pH: 7 to 7.5 and hardness: 200 ppm. Fish were acclimatized in 70*40*30 cm aquarium for 10 d before the test. Treated aquariums with concentrations of 0.01, 0.05, 2, 4, 8, 16 ppm of edifenphos with one control group (no toxic concentration), were performed. In order to test the effect of temperature on acute toxicity, three ranges of 15±1, 20±1 and 25±1 ºC were treated and LC1, LC10, LC30, LC50, LC70, LC90 and LC99 were calculated for 24, 48, 72 and 96 h. The study was carried out in Laboratory of Aquaculture and Fisheries, University of Tehran in 2016.

Results: LC50 value in 25 ºC was lower than 20 and 15 ºC. LC50 96h edifenphos for Caspian kutum in 15±1, 20±1 and 25±1 ºC was 3.70, 3.61 and 3.26, respectively.

Conclusion: Higher temperature increase toxicity rate of edifenphos and the toxin had a positive temperature coefficient on Caspian kutum.

Keywords: Caspian Kutum, Edifenphos, Organophosphorus Fungicide, Lethal Concentration, Temperature
Full-Text [PDF 233 kb]   (394 Downloads)    
Type of Study: Research | Subject: Special
1. Bouldin J, Farris J, Moore M, Smith Jr S, Cooper C. Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing. Arch Environ Arch Environ Contam Toxicol 2007;53(2):174-82. [DOI:10.1007/s00244-006-0180-6]
2. Konstantinou IK, Hela DG, Albanis TA. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 2006;141(3):555-70. [DOI:10.1016/j.envpol.2005.07.024]
3. Kolpin DW, Thurman EM, Lee EA, Meyer MT, Furlong ET, Glassmeyer ST. Urban contributions of glyphosate and its degradate AMPA to streams in the United States. Sci Total Environ 2006;354(2):191-7. [DOI:10.1016/j.scitotenv.2005.01.028]
4. Kreutz LC, Barcellos LJG, de Faria Valle S, de Oliveira Silva T, Anziliero D, dos Santos ED, et al. Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish Shellfish Immunol 2011;30(1):51-7. [DOI:10.1016/j.fsi.2010.09.012]
5. Khanghah MM, Bozorgniya A. Destructive effects of Edifenphos fungicide on Rutilus rutilus caspicus gill. Int J Biosci 2014;5:27-33. [DOI:10.12692/ijb/5.6.27-33]
6. Wiebe MG, Robson GD, Trinci AP. Edifenphos (Hinosan) reduces hyphal extension, hyphal growth unit length and phosphatidylcholine content of Fusarium graminearum A3/5, but has no effect on specific growth rate. Microbiol 1990;136(6):979-84. [DOI:10.1099/00221287-136-6-979]
7. Chen TS, Kinoshita FK, DuBois KP. Acute toxicity and antiesterase action of O-ethyl-S, S-diphenyl phosphorodithioate (Hinosan®). Toxicol Appl Pharmacol 1972;23(3):519-27. [DOI:10.1016/0041-008X(72)90054-3]
8. Axelrad J, Howard C, McLean W. Interactions between pesticides and components of pesticide formulations in an in vitro neurotoxicity test. Toxicol 2002;173(3):259-68. [DOI:10.1016/S0300-483X(02)00036-7]
9. Aluigi M, Angelini C, Falugi C, Fossa R, Genever P, Gallus L, et al. Interaction between organophosphate compounds and cholinergic functions during development. Chem-Biol Interact 2005;157:305-16. [DOI:10.1016/j.cbi.2005.10.037]
10. El-Gendy K, Aly N, Saber N, El Sebae A. Toxicological Effects of Some Pesticides on Tilapia Nilotica. Alexandria Sci Exch J 1996;17:243-52.
11. Gaafar A, El-Manakhly E, Soliman M, Soufy H, Zaki M, Mohamed S, et al. Some pathological, biochemical and hematological investigations on Nile tilapia (Oreochromis niloticus) following chronic exposure to edifenphos pesticide. J Am Sci 2010;6(10):542-51.
12. Yousefian M, Mosavi H. Spawning of South Caspian Kutum(Rutilus frisii kutum) in Most Migratory River of South Caspian Sea. Asian J Anim Vet Adv 2008;3(6):437-42. [DOI:10.3923/ajava.2008.437.442]
13. Enayat Gholampoor T, Imanpoor M, Shabanpoor B, Hosseini S. The Study of Growth Performance, Body Composition and Some Blood Parameters of Rutilus frisii kutum (Kamenskii, 1901) Fingerlings at Different Salinities. J Agric Sci Technol 2011;13:869-76.
14. Finney DJ. Probit analysis; a statistical treatment of the sigmoid response curve. Cambridge. 1971.
15. MacLeod J, Pessah E. Temperature effects on mercury accumulation, toxicity, and metabolic rate in rainbow trout (Salmo gairdneri). J Fish Res Board Can 1973;30(4):485-92. [DOI:10.1139/f73-086]
16. García-Esquivel Z, Montes-Magallón S, González-Gómez MA. Effect of temperature and photoperiod on the growth, feed consumption, and biochemical content of juvenile green abalone, Haliotis fulgens, fed on a balanced diet. Aquaculture 2007;262(1):129-41. [DOI:10.1016/j.aquaculture.2006.09.022]
17. Boone MD, Bridges CM. The effect of temperature on the potency of carbaryl for survival of tadpoles of the green frog (Rana clamitans). Environ Toxicol Chem 1999;18(7):1482-4. [DOI:10.1002/etc.5620180720]
18. Lau ETC, Karraker NE, Leung KMY. Temperature‐dependent acute toxicity of methomyl pesticide on larvae of 3 Asian amphibian species. Environ Toxicol Chem 2015;34(10):2322-7. [DOI:10.1002/etc.3061]
19. OECD. OECD Guidelines for the Testing of Chemicals: Organization for Economic; 1994.
20. Larkin DJ, Tjeerdema RS. Fate and effects of diazinon. Rev Environ Contam Toxicol 2000;166:49-82.
21. Pe-a-Llopis S, Ferrando MD, Pe-a JB. Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquat Toxicol 2003;65(4):337-60. [DOI:10.1016/S0166-445X(03)00148-6]
22. Naserabad SS, Mirvaghefi A, Gerami MH, Ghafari H. Acute toxicity and behavioral changes of the gold fish (Carassius auratus) exposed to malathion and hinosan. Iran J Toxicol 2015;8(27): 1203-8.
23. Svoboda M, Luskova V, Drastichova J, Žlabek V. The effect of diazinon on haematological indices of common carp (Cyprinus carpio L.). Acta Vet Brno 2001;70(4):457-65. [DOI:10.2754/avb200170040457]
24. Svobodova Z, Luskova V, Drastichova J, Svoboda M, Žlábek V. Effect of deltamethrin on haematological indices of common carp (Cyprinus carpio L.). Acta Vet Brno 2003;72(1):79-85. [DOI:10.2754/avb200372010079]
25. Patra RW, Chapman JC, Lim RP, Gehrke PC. The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ Toxicol Chem 2007;26(7):1454-9. [DOI:10.1897/06-156R1.1]
26. Kir M, Topuz H, Sunar MC, Topuz M. Effect of Temperature on Acute Toxicity of Nitrite to Meagre, Argyrosomus regius (Asso, 1801). J World Aquacult Soc 2015;46(5):564-8. [DOI:10.1111/jwas.12214]
27. Folmar LC, Sanders H, Julin A. Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 1979;8(3):269-78. [DOI:10.1007/BF01056243]
28. Gordon CJ. Temperature and toxicology: an integrative, comparative, and environmental approach: CRC press; 2005. [DOI:10.1201/9781420037906]
29. Masud S, Singh I. Temperature dependent toxicity and behavioural responses in the freshwater fish Cyprinus carpio exposed to pyrethroid pesticide, cypermethrin. J Environ Sci Water Resour 2013;2(10):375-81.
30. Bhadja P, Vaghela A. Effect of temperature on the toxicity of some metals to Labeo bata (Hamilton, 1822). Int J Adv Life Sci 2013; 6(3): 252-4.
31. Rathore RS, Khangarot B. Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Müller to selected heavy metals. Ecotoxicol Environ Saf 2002;53(1):27-36. [DOI:10.1006/eesa.2001.2100]
32. Shimaila AMA. Effect of Some Additives on the Toxicity of Certain Rodenticides against White Rat Fed on Different Diets. [Ph.D. Thesis] High Institute of Public Health, Alexandria University, Egypt, 1989.
33. Powers EB. Influence of Temperature and Concentration on the Toxicity of Salts to Fishes. Ecology 1920;1(2):95-112. [DOI:10.2307/1929078]
34. Weis JS, Candelmo A. Pollutants and fish predator/prey behavior: a review of laboratory and field approaches. Curr Zool 2012;58(1):9-20. [DOI:10.1093/czoolo/58.1.9]
35. Mohanambal R, Purvaneswari S. A study of the Acute toxicity of Lead Nitrate (Pb (NO3) 2) on the fresh water fish Catla catla (Hamilton, 1862). Int J Curr Res 2013;5(8):2151-5.
36. Köprücü SŞ, Köprücü K, Ural MŞ, İspir Ü, Pala M. Acute toxicity of organophosphorous pesticide diazinon and its effects on behavior and some hematological parameters of fingerling European catfish (Silurus glanis L.). Pestic Biochem Physiol 2006;86(2):99-105. [DOI:10.1016/j.pestbp.2006.02.001]
37. Patil VK, David M. Behaviour and respiratory dysfunction as an index of malathion toxicity in the freshwater fish, Labeo rohita (Hamilton). Turk J Fish Aquat Sci 2008;8(2).
38. Naserabad SS, Mirvaghefi A, Gerami MH, Farsani HG. Acute toxicity and behavioral changes of Caspian kutum (Rutilus frisii Kutum Kamensky, 1991) and Caspian roach (Rutilus rutilus caspicus Jakowlew, 1870) exposed to the fungicide hinosan. Afr J Biotechnol 2015;14(20):1737-42. [DOI:10.5897/AJB2015.14494]

XML     Print

Volume 11, Issue 2 (March-April 2017) Back to browse issues page