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ABSTRACT 
Background: The area of contaminated lands exposed to the health risk of environmental 
pollutants is a matter of argument. In this study, a new method was developed to estimate the 
amount of area that is exposed to higher than normal levels of Cr, Mn, and V. 
Methods: Overall, 170 soil samples were collected from the upper 10 cm of soil in an arid area in 
central part of Iran in Semnan Province. The values of Cr, Mn, and V were detected by ICP-OES 
technique. A geostatistical method known as sequential Gaussian co-simulation was applied to 
consider the spatial risk of these toxic elements. 
Results: The moderate spatial dependence of Cr indicates the contribution of both intrinsic and 
extrinsic factor to the levels of this heavy metal in the study area, whereas, Mn and V can be 
attributed to intrinsic factors (such as lithology). There has not been any significant influence due 
to agricultural practices on the Cr values in the region. The surface of contaminated area for 
manganese, produced by risk curve on surface method, was higher than chromium and vanadium. 
Conclusion: The produced risk curves as rendered in this study can be adopted in similar 
studies to help managers to estimate the total area that requires cleanup action. 
Keywords: Heavy Metals, Risk Assessment, Risk Curve On Surface, Sequential Gaussian Co-
Simulation. 
                                                                                              IJT 2017 (3): 39-45 
 

INTRODUCTION 
According to the environmental quality 

standards, heavy metals (HMs) can threaten the 
health of local residents (e.g. through consumption 
of contaminated plants) if their levels in soil 
exceed some threshold values. There have been 
multiple types of research on the monitoring of 
heavy metals in environmental media (e.g. soil, 
plants, sediments, etc.) in Iran and the world. For 
example, the distribution of HMs in some 
agricultural soils in Tehran [1]; the 
bioaccumulation of lead and manganese on some 
plant species in Semnan Province [2] and HM's 
accumulation in the sediments of Anzali Wetland 
[3].  

In this field, one of the questions posed by 
environmental researchers is the area of 
contaminated land exposed to the health risk of 
environmental pollutants (e.g. HMs). The areas 
that need to be managed by managers are known, 
accordingly. These regions are usually located in 
regions in which the level of pollution exceeds the 
health risk standard levels. For instance, the 
problem of identification of rehabilitation area can 

be solved via simulations, through quantification 
of the risk of exceeding a significant threshold for 
each variable. In this way, rehabilitation strategies 
can simply be planned by decision makers and 
managers [4]. 

There have been multiple applications of 
sequential Gaussian co-simulation for the study of 
spatial pattern of soil attributes including soil 
organic matter [5], bioavailable parts of 
phosphorus and potassium [6], and soil salinity 
[7]. However, even though, there is few case 
studies about its application for the assessment of 
contaminated sites. For instance, used SGCS 
thereby risk assessment for contaminated sites by 
organic and inorganic pollutants in northern part 
of Italy [8]. 

The main objective of the current study was 
to develop a method, for the first time, to consider 
the spatial health risk assessment of heavy metals 
(Cr, Mn, and V) in an arid area, through different 
realizations produced by sequential Gaussian co-
simulation method (SGCS) which is a 
geostatistical technique. Through implementation 
of this method, the area that needs to be 
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rehabilitated is estimated easily. This study area 
was selected for the values of the above-
mentioned HMs in soil samples exceeded the 
threshold standard levels in this region based on 
our monitoring program. Moreover, the spatial 
map of the contaminated areas will be produced 
by geostatistical methods as well.  

MATERIAL AND METHODS 
Field, Laboratory Analysis, and Statistical 
Analysis 

The study region, with an area of 4416 km2, 
is located in an arid area in which the main source 
of water for agricultural and household usage is 
provided through groundwater. Next, to 
agriculture, mining activity is the other source 
contributing to the contamination of soil and 
groundwater with HMs in recent years [9, 10].  

A systematic random sampling was 
followed to collect 170 soil samples from the 
upper 10 cm of soil. In laboratory, the collected 
soil samples were air-dried and sieved through a 
2-mm stainless steel mesh to remove stones and 
plant roots. The digestion of soil samples was 
implemented by a mixture of nitric acid (HNO3) 
and hydrochloric acid (HCl) in a ratio of 3:1 
(HNO3: HCl). The digested samples were 
analyzed by inductively coupled plasma (ICP) 
optical emission spectroscopy (ICP-OES) to 
record the total concentrations of trace elements 
including Cr, Mn, and V. An illustrative map of 
the study is provided in Figure 1.To test the 
hypothesis about the possible role of agricultural 
activities on the soil's levels of Cr and Ni, a Mann-
Whitney U-test was performed on the 
concentrations of Cr in agricultural fields against 
that of other land-uses. 

 
Figure 1. An illustrative map of the study area in 
which sampling stations have been highlighted. 

Sequential Gaussian Co-Simulation 
Recently, multiple simulation methods such 

as Sequential Gaussian Simulation (SGS) [11], 
Turning Bands [12] and Simulated Annealing [13] 
have been utilized to obtain simulation maps of 
soil attributes; however, the most applied one is 
SGS [14]. In this method, a normal conditional 
cumulative distribution function is first 
determined for each value to be simulated at each 
simulation grid cell followed by sequential 
simulation of original data and the previously 
simulated values with neighborhood assigned 
based on the distance between sampling points. 
The data values approximately comply with 
normality assumption (otherwise the data have to 
be transformed to normal values using normal 
score transformation), SGS method use a 
variogram model and simple kriging to determine 
mean and variance of the Gaussian conditional 
cumulative distribution function (ccdf). This value 
is then inserted into the grid and added to the data. 
The process is then repeated by simulating the 
value of the next node in the grid until all of the 
nodes have been simulated [14]. 

On the contrary, in sequential Gaussian co-
simulation (SGCS) [15], the principles of SGS and 
co-kriging are combined and simulation of the 
primary variable is conditioned to both primary 
and secondary data [16]. In the latest method, 
despite the SGS, variograms, and cross-
variograms should be fitted with a linear model of 
coregionalization (LMC) to satisfy the positive 
definiteness condition [17]. In this technique, 
simple collocated cokriging is used instead of 
simple kriging to implement the simulations [5] 
and the conditioning data consists of primary and 
secondary data along with the previously 
simulated values. In both SGS and SGCS, the 
simulated values are back-transformed using the 
inverse of the Gaussian anamorphosis function 
used for normal score transformation of original 
data.  

Spatial Health Risk Assessment 
Independent paths were utilized to perform 

1000 different SGCS realizations on a simulation 
grid of 1000m×1000m using normal score 
transformed values of Cr, Mn, and V resulting in 

 equiprobable realizations. In this single-location 
uncertainty method [18], these realizations can 
subsequently be used to calculate the probability 
that the unknown HMs ( at location , 
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exceed given thresholds value ( , denoted as 
 and it is being calculated as 

follows: 

                                 (1) 

Where  represents the number of 
realizations (out of 1000 realizations) in which the 
concentration values was greater than the 
threshold (e.g. standard level for HMs in this 
case). To calculate the spatial health risk of these 
HMs we produce curves, called risk curve on 
surface. The number of nodes for which the 
respective HM was equal or higher than the cutoff 
value was calculated first using 1000 generated 
realizations and the results were multiplied by the 
unit surface of the simulation grid to obtain the 
risk curve on surface for each HM. Three different 
quantiles (including 5, 50 and 95) were applied to 
report the spatial risk of calculations. The standard 
values for Cr, Mn, and V were 110600 and 
100mg/kg, respectively. 

RESULTS 
The histograms of investigated heavy metals 

(Cr, Mn, and V), indicting the frequency 
distribution each element, have been depicted in 
Figure 2. On the other hand, Figure 3 illustrates 
the variogram model fitted to each HM while the 
respective variogram parameters were rendered in 
Table 1. The results of variogram model fitting 
(Figure 3) showed that the best-fitted model for 

Mn and V was a spherical model whereas an 
exponential model better fitted to the experimental 
vatiogram of Cr. The mean of simulated Cr, Mn 
and V using SGCS (also known as E-Type map) is 
depicted in Figure 4. On the contrary, the resultant 
Mann-Whitney U-test did not produce any 
significant result indicating that agricultural 
practices have not significantly influenced the 
values of Cr in the study area or they have not 
used Cr as impurities in their applied fertilizers. 

The results of risk curves on surface are 
depicted in Figure 5, for Cr, Mn, and V, 
respectively. The surface area (Km2) for which the 
simulated value of Cr has been equal or greater 
than the guideline level fluctuated between 481 
km2 and 1214 km2 with an average value of 
782.39 km2. Nearly 18% of the study area had 
chromium levels that were equal to or greater than 
the standard level of 110 mg/kg. The critical 
quantiles of 5, 50 and 95 were also obtained 616 
km2, 778 km2 and 971 km2 indicating the 
uncertainty of our calculations. Referring to risk 
curve on surface of Mn, the simulation's 
predictions varied between 1710 km2 and 2781 
km2 with an average value of 2230.09 km2, 
meaning that 50% of the total study area have 
manganese values equal to or greater than the 
standard level of 600mg/kg. The predictions were 
also 1928, 2230 and 2520 km2 for 5, 50 and 95 
quantiles, respectively. 

Table 1. Parameters of variogram models for each HM. 
Heavy 
metals 

Variogram 
model 

C0 
(mg/kg)2 

C+C0 
(mg/kg)2 C0/C+C0 

Range 
(km) 

Cr Exponential 173.20 499.80 0.35 23.71 
Mn Spherical 700.00 34900 0.02 7.19 
V Spherical 78.54 499.90 0.16 29.85 

 

 
Figure 2.Histogram of a (Cr),b(Mn) and c(V). 
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Figure 3.Variogram models fitted to experimental variogram of each HM. 

 

     

 
Figure 4. Produced map related to mean of realizations for a (Cr), b (Mn) and c (V). 
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Figure 5. Risk curve on surface for a(Cr),b(Mn),c(V) and the respective 5, 50 and 95 probabilities. 

 
The generated risk curve on surface for V 

shows a higher risk than Mn but a lower risk than 
that of Cr. The area equal or higher than the cutoff 
value, in this case, ranged between 432 km2 and 
1412 km2 with a mean value of 938.30Km2 
indicating that about 21% of the total study area 
might have been contaminated. The respective 
levels of 5, 50 and 95 quantiles were 724934 and 
1182 km2, respectively. 

DISCUSSION 
Among 170 soil samples, 18 samples for Cr 

(10.6%), 21 samples for V (12.4%) and 57 
samples for Mn (33.5%) had exceeded the related 
standard values of 110 mg/kg, 100 mg/kg and 600 
mg/kg, respectively.  

Nugget to sill ratio (Table 1) can be used to 
consider the extent of intrinsic (such as geological 
formations and soil parent material) or extrinsic 
factors (e.g. agricultural, urban or industrial 
activities) on the spatial variability of soil 
properties [11]. Values less than 25% indicate 
strong spatial dependent and can be attributed to 
intrinsic factors while levels between 25% and 
75% implying moderate spatial dependent and are 
attributable to both intrinsic and extrinsic factors 
[19]. The spatial variability of Mn and V are 

strong while Cr are moderate indicating the 
contribution of both soil parent materials and 
anthropogenic sources (e.g. mining and 
agricultural activities in this case) to the measured 
values of chromium in soil samples (Table 1). 

The mean realization has been categorized 
into four quantiles considering the lowest and 
highest contamination level in each map. There 
are some localized hotspots associated with each 
HM highlighted using red colors. Referring to 
spatial variability of each these HMs, the 
moderate spatial dependence of Cr indicates the 
contribution of both intrinsic and extrinsic factor 
to the levels of this HM, Mn, and V can be 
attributed to intrinsic factors (such as lithology). 
The elevated levels of Cr have been proved to 
emanate from the ultramafic rocks and the 
resultant soils developed due to the weathering of 
these geological facies [20]. The association 
between the elevated levels of Cr and ultramafic 
parent materials (e.g. serpentinite) has been well 
documented in other published literature as well 
[21; 22]. The higher than standard values of 
chromium (e.g. up to 179.8mgkg-1) in some soil 
samples might be due to the prevalence of these 
soils in some parts of the study area [23]. This 
confirms the possible contribution of parent 
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materials to the values of chromium. However, 
even though, there is some localized 
contamination related to Cr in southwest and 
northeastern part of the region. The southwest 
part's hotspot coincided with some mining 
activities based on the land use map (Figure 1). At 
least in some parts of the region, the elevated 
levels of Cr can be attributed to prevalent mining 
activities. Pyrite oxidation at waste dump in 
mining area caused pick concentration of sulfate 
[24]. The elevated levels of some HMs (including 
Cr) in the nearby of mining area have originated 
from these activities [25]. On the other hand, Cr is 
available in appreciable amounts as impurities in 
phosphate fertilizers [26].  

The levels of Mn in soils are very different, 
however; soils derived from mafic rocks and soils 
in arid and semi-arid regions (like the study area) 
usually contain elevated levels of this element 
[27]. This may partly justify the high-detected 
levels of this heavy metal in some parts of the 
region. Moreover, oil exploration next to parent 
materials and pedogenic processes happening 
during soil development are main sources of 
vanadium in soil samples. The absence of oil 
exploration operation in the study area attests to 
the results of variography implying that vanadium 
and manganese have most probably emanated 
from soil formation factors and parent materials.  

Given the uncertainty of predictions made 
by risk curve of surface results, the uncertainty of 
predictions of manganese was roughly lower than 
chromium that might be due to the local impacts 
of anthropogenic sources resulting in more patchy 
hotspots than intrinsic source. The produced risk 
curves as rendered in this study can be adopted in 
similar studies to measure the reliability of 
contaminated area and help managers to estimate 
the total area that requires cleanup action. In cases 
that researchers have the required budget to 
collect 3D samples (e.g. not only on the surface 
but also in the deeper parts of the soil), the risk 
curve on volume can also be obtained indicating 
the total amount of contaminated soil. In this way, 
the amount of budget needed to remediate the 
contaminated soil (in situ or off site) can be 
estimated as well. 

CONCLUSION 
A method that called risk curve on surface 

was proposed to account for the spatial risk of 
HMs through risk curve of surface plots. Using 

these curves, the quantiles of areas for which the 
level of contamination is equal or higher than the 
standard values can be calculated thereby an 
estimate of spatial risk is provided for researchers. 
These curves measure the reliability of delineating 
contaminated area and help managers to plan for 
the future cleanup actions. 
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