:: Volume 11, Issue 5 (September-October 2017) ::
IJT 2017, 11(5): 31-36 Back to browse issues page
The Cytotoxicity of Dextran-coated Iron Oxide Nanoparticles on Hela and MCF-7 Cancerous Cell Lines
Masoud Rezaei , Hossein Mafakheri , Karim Khoshgard * , Alireza Montazerabadi , Ahmad Mohammadbeigi , Farhad Oubari
Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. , khoshgardk@gmail.com
Abstract:   (805 Views)
Background: Recently, iron oxide nanoparticles have attracted attention in various diagnosis and treatment fields. The aim of the present study was to investigate the cytotoxicity of various concentrations and incubation times of dextran-coated iron oxide nanoparticles (DIONPs) on HeLa and MCF-7 cancerous cell lines.
Methods: This in-vitro study was conducted at Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran in 2016. The dextran-coated iron oxide nanoparticles (DIONPs) uptake and cytotoxicity at different concentrations (10, 40 and 80 µg/ml) and different incubation times (6, 12 and 24 h) were assessed on HeLa and MCF-7 cell lines. The viability of the cells was measured by MTT assay.
Results: DIONPs entered into the HeLa and MCF-7 cells. After 6, 12 and 24 h incubation times and in all concentrations, the viability of HeLa cells was more than 94%. For MCF-7 cell line, increasing incubation time from 6 to 24 h at a concentration of 10 μg/ml decreased the cells viability from 98% to 95%. When the cells were exposed to concentrations of 40 and 80 μg/ml of the nanoparticles, significant reductions in the cells viability was observed from 98% to 91.6% and from 95% to 88%, respectively.
Conclusion: DIONPs cytotoxicity increased by increasing the incubation time from 6 to 24 h and also increased with increasing the nanoparticles concentration from 0 to 80 μg/ml. In general, DIONPs did not cause considerable toxicity in both cell lines especially at lower concentrations. Therefore, these nanoparticles are good candidates for use in biomedical and cancer research studies.
Keywords: Cytotoxicity, Dextran, HeLa Cells, Iron Oxide Nanoparticles, MCF-7 Cells
Full-Text [PDF 2052 kb]   (270 Downloads)    
Type of Study: Research | Subject: Special
1. Mohseni Kouchesfehani H, Kiani S, Rostami AA, Fakheri R. Cytotoxic effect of iron oxide nanoparticles on mouse embryonic stem cells by MTT assay. Iran J Toxicol 2013;7(21):849-53.
2. Na HB, Palui G, Rosenberg JT, Ji X, Grant SC, Mattoussi H. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 2011;6(1):389-99. [DOI:10.1021/nn203735b]
3. Medarova Z, Pham W, Kim Y, Dai G, Moore A. In vivo imaging of tumor response to therapy using a dual modality imaging strategy. Int J Cancer 2006;118(11):2796-802. [DOI:10.1002/ijc.21672]
4. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 2005;39(23):9370-6. [DOI:10.1021/es051043o]
5. Mahmoudi M, Simchi A, Vali H, Imani M, Shokrgozar MA, Azadmanesh K, et al. Cytotoxicity and cell cycle effects of bare and poly (vinyl alcohol) coated iron oxide nanoparticles in mouse fibroblasts. Adv Eng Mater 2009;11(12):B243-B50. [DOI:10.1002/adem.200990035]
6. Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small 2010;6(1):12-21. [DOI:10.1002/smll.200901158]
7. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26(18):3995-4021. [DOI:10.1016/j.biomaterials.2004.10.012]
8. Dwivedi S, Siddiqui MA, Farshori NN, Ahamed M, Musarrat J, Al-Khedhairy AA. Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf B 2014;122:209-15. [DOI:10.1016/j.colsurfb.2014.06.064]
9. Yuqing Ge, Zhang Y, He S, Nie F, Teng G, Gu N. Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 2009;4(4):287-8. [DOI:10.1007/s11671-008-9239-9]
10. Perez JM, Asati A, Nath S, Kaittanis C. Synthesis of Biocompatible Dextran Coated Nanoceria with pH Dependent Antioxidant Properties. Small 2008;4(5):552-6. [DOI:10.1002/smll.200700824]
11. Nath S, Kaittanis C, Tinkham A, Perez JM. Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal Chem 2008;80(4):1033-8. [DOI:10.1021/ac701969u]
12. Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A. The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol 2014;90(5):351-6. [DOI:10.3109/09553002.2014.888104]
13. Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 2006;41(12):2699-711. [DOI:10.1080/10934520600966177]
14. Kim JS, Yoon T-J, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 2006;89(1):338-47. [DOI:10.1093/toxsci/kfj027]
15. Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size. Toxicol Lett 2009;188(2):112-8. [DOI:10.1016/j.toxlet.2009.03.014]
16. Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 2008;21(9):1726-32. [DOI:10.1021/tx800064j]
17. Villanueva A, Canete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, et al. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 2009;20(11):115103-4. [DOI:10.1088/0957-4484/20/11/115103]
18. Ankamwar B, Lai T, Huang J, Liu R, Hsiao M, Chen CH, et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 2010;21(7):075102-3. [DOI:10.1088/0957-4484/21/7/075102]
19. Hoskins C, Cuschieri A, Wang L. The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnol 2012;10(1):1-2. [DOI:10.1186/1477-3155-10-15]
20. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharmaceutics 2008;5(2):316-27. [DOI:10.1021/mp7001285]
21. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Delivery Rev 2009;61(6):428-37. [DOI:10.1016/j.addr.2009.03.009]
22. Barbaro D, Di Bari L, Gandin V, Evangelisti C, Vitulli G, Schiavi E, et al. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapour synthesis are electively internalized in a pancreatic adenocarcinoma cell line expressing GLUT1 transporter. Plos One 2015;10(4):59-60. [DOI:10.1371/journal.pone.0123159]
23. Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 2013;9(10):1533-45. [DOI:10.1002/smll.201201531]
24. Sanganeria P, Sachar S, Chandra S, Bahadur D, Ray P, Khanna A. Cellular internalization and detailed toxicity analysis of protein immobilized iron oxide nanoparticles. J Biomed Mater Res Part B 2015;103(1):125-34. [DOI:10.1002/jbm.b.33178]

XML     Print

Volume 11, Issue 5 (September-October 2017) Back to browse issues page