:: Volume 11, Issue 4 (July-August 2017) ::
IJT 2017, 11(4): 5-12 Back to browse issues page
Protective Effects of Dietary Spirulina platensis against Cadmium-Induced Oxidative Stress in Gills of Rainbow Trout
Hamid Evaz-Zadeh Samani , Mahdi Banaee * , Parvaneh Shoukat , Ahmad Noori , Laleh Mousavi Dehmoredi
Department of Aquaculture, Behbahan KhatamAlanbia University of Technology, Behbahan, Iran. , banaee@bkatu.ac.ir
Abstract:   (1064 Views)

Background: Contamination of feeds with cadmium leads to oxidative stress in vital tissues such as gills and affects the fish survival. Therefore, an increase in the capacity of the antioxidant defense system and detoxification system of fish may reduce adverse effects of pollutants. This study investigated the protective effects of microalga Spirulina platensis against oxidative stress in gills of cadmium-treated rainbow trout.

Methods: This study was conducted at Fish Farm, Almas-Dime Village, Koohrang, Charmahal & Bakhtiari Province, Iran from April to July 2016. Rainbow trout were allocated into five groups of which one group received normal feed and served as control. Fish from group II received 0.2 mg CdCl2 per 1 kg feed. Groups III-V were fed with enriched diet with 2.5, 5 and 10 g S. platensis per 1 kg feed, respectively and simultaneously treated with 0.2 mg kg-1 CdCl2 for 21 d. Changes in biochemical parameters including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), malondialdehyde (MDA) as marker of lipid peroxidation and cellular total antioxidant capacity were evaluated.

Results: Oral exposure to CdCl2 caused a significant increase in MDA levels and altered AST, ALT, ALP and LDH activities in gills (P<0.05). The cellular antioxidant capacity was significantly lowered in CdCl2-treated fish as compared to the control group (P<0.05). Oral administration of S. platensis significantly ameliorated these changes in certain biochemical parameters in gills of CdCl2-treated fish.

Conclusion: The findings indicate that S. platensis has protective effects against toxic influence of CdCl2 on certain biochemical parameters in gills of fish.

Keywords: Biochemical Parameter, Cadmium, Microalga, Oxidative Stress
Full-Text [PDF 487 kb]   (432 Downloads)    
Type of Study: Research | Subject: Special
References
1. Zeitoun MM, Mehana E-SE. Impact of water pollution with heavy metals on fish health: overview and updates. Global Vet 2014;12(2):219-31.
2. Pereira F, Azevedo F, Parachin NS, Hahn-Hägerdal Br, Gorwa-Grauslund MF, Johansson Br. Yeast Pathway Kit: A Method for Metabolic Pathway Assembly with Automatically Simulated Executable Documentation. ACS Synth Biol 2016;5(5):386-94. [DOI:10.1021/acssynbio.5b00250]
3. Yang Y, Li H, Peng L, Chen Z, Zeng Q. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction. Food Chem 2016;197:482-8. [DOI:10.1016/j.foodchem.2015.10.143]
4. Bodin N, Lesperance D, Albert R, Hollanda S, Michaud P, Degroote M, et al. Trace elements in oceanic pelagic communities in the western Indian Ocean. Chemosphere 2017;174:354-62. [DOI:10.1016/j.chemosphere.2017.01.099]
5. Heshmati A, Momtaz JK, Nili-Ahmadabadi A, Ghadimi S. Dietary exposure to toxic and essential trace elements by consumption of wild and farmed Carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii kutum) in Iran. Chemosphere 2017;173:207-15. [DOI:10.1016/j.chemosphere.2017.01.009]
6. Mehrpak M, Banaee M, Nematdoost Haghi B, Noori A. Protective Effects of Vitamin C and Chitosan against Cadmium-Induced Oxidative Stress in the Liver of Common Carp (Cyprinus carpio). Iran J Toxicol 2015;9(30):1360-7.
7. Onukwufor JO, Stevens D, Kamunde C. Combined effects of cadmium, temperature and hypoxia-reoxygenation on mitochondrial function in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol 2017;182:129-41. [DOI:10.1016/j.aquatox.2016.11.015]
8. Zheng J-L, Yuan S-S, Wu C-W, Lv Z-M. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquatic Toxicol 2016;180:36-44. [DOI:10.1016/j.aquatox.2016.09.012]
9. Zheng J-L, Yuan S-S, Wu C-W, Lv Z-M, Zhu A-Y. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish. Aquatic Toxicol 2017;182:113-9. [DOI:10.1016/j.aquatox.2016.11.017]
10. Manera M, Dezfuli BS, DePasquale JA, Giari L. Multivariate approach to gill pathology in European sea bass after experimental exposure to cadmium and terbuthylazine. Ecotoxicol Environ Saf 2016;129:282-90. [DOI:10.1016/j.ecoenv.2016.03.039]
11. Yuan S-S, Lv Z-M, Zhu A-Y, Zheng J-L, Wu C-W. Negative effect of chronic cadmium exposure on growth, histology, ultrastructure, antioxidant and innate immune responses in the liver of zebrafish: Preventive role of blue light emitting diodes. Ecotoxicol Environ Saf 2017;139:18-26. [DOI:10.1016/j.ecoenv.2017.01.021]
12. Adel M, Yeganeh S, Dadar M, Sakai M, Dawood MA. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish Shellfish Immunol 2016;56:436-44. [DOI:10.1016/j.fsi.2016.08.003]
13. Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016;90(8):1817-40. [DOI:10.1007/s00204-016-1744-5]
14. Abdel-Daim MM, Abuzead SM, Halawa SM. Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS ONE 2013;8(9):e72991-2. [DOI:10.1371/journal.pone.0072991]
15. Bashandy SA, El Awdan SA, Ebaid H, Alhazza IM. Antioxidant potential of Spirulina platensis mitigates oxidative stress and reprotoxicity induced by sodium arsenite in male rats. Oxid Med Cell Longev 2016;2016.
16. Perez-Juarez A, Chamorro G, Alva-Sánchez C, Paniagua-Castro N, Pacheco-Rosado J. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death. Pharm Biol 2016;54(8):1408-12. [DOI:10.3109/13880209.2015.1103756]
17. Yigit F, Gurel-Gurevin E, Isbilen-Basok B, Esener O, Bilal T, Keser O, et al. Protective effect of Spirulina platensis against cell damage and apoptosis in hepatic tissue caused by high fat diet. Biotech Histochem 2016;91(3):182-94. [DOI:10.3109/10520295.2015.1114142]
18. Mobasher M, Aramesh K, Aldavoud S, Ashrafganjooei N, Divsalar K, Phillips C, et al. Proposing a national ethical framework for animal research in Iran. Journal of Medical Ethics and History of Medicine 2008;37(1 Sup):39-46.
19. Yeganeh S, Teimouri M, Amirkolaie AK. Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res Vet Sci 2015;101:84-8. [DOI:10.1016/j.rvsc.2015.06.002]
20. Moss DV, Henderson AR. Clinical enzymology. In: Burtis CA, Ashwood ER. Tietz Textbook of Clinical Chemistry. 3rded. Philadelphia: W.B. Saunders Company; 1999. p. 617-721.
21. Johnson AM, Rohlfs EM, Silverman LM. Proteins. In: Burtis CA, Ashwood ER(. Tietz Textbook of Clinical Chemistry. 3rded. Philadelphia: W.B. Saunders Company; 1999. p. 477-540.
22. Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta 1991;196(2-3):143-51. [DOI:10.1016/0009-8981(91)90067-M]
23. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996;239(1):70-6. [DOI:10.1006/abio.1996.0292]
24. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 1966;16(2):359-64. [DOI:10.1016/0003-2697(66)90167-9]
25. Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca. Environ Toxicol Chem 2016.
26. Mohiseni M, Asayesh S, Shafiee Bazarnoie S, Mohseni F, Moradi N, Matouri M, et al. Biochemical Alteration Induced by Cadmium and Lead in Common Carp via an Experimental Food Chain. Iran J Toxicol 2016;10(4):25-32.
27. Mehrepak M, Banaie M, Nematdoste Haghi B, Noori A. The protective effect of vitamin C and chitosan on oxidative biomarkers in gills of common. Iran Sci Fisheries J 2016;24(4):31-45.
28. Oropesa A-L, García-Cambero JP, Soler F. Glutathione and malondialdehyde levels in common carp after exposure to simazine. Environ Toxicol Pharmacol 2009;27(1):30-8. [DOI:10.1016/j.etap.2008.08.003]
29. Cao L, Huang W, Liu J, Yin X, Dou S. Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comp Biochem Physiol Part C: Toxicol Pharmacol 2010;151(3):386-92. [DOI:10.1016/j.cbpc.2010.01.004]
30. Finamore A, Palmery M, Bensehaila S, Peluso I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxid Med Cell Longevity 2017;2017.
31. Rehman H, Aziz AT, Saggu S, VanWert AL, Zidan N, Saggu S. Additive toxic effect of deltamethrin and cadmium on hepatic, hematological, and immunological parameters in mice. Toxicol Ind Health 2017. [DOI:10.1177/0748233716684710]
32. Kiran Kumar K, Naveen Kumar M, Patil RH, Nagesh R, Hegde SM, Kavya K, et al. Cadmium induces oxidative stress and apoptosis in lung epithelial cells. Toxicol Mech Methods 2016;26(9):658-66. [DOI:10.1080/15376516.2016.1223240]



XML     Print



Volume 11, Issue 4 (July-August 2017) Back to browse issues page