Volume 12, Issue 2 (March-April 2018)                   IJT 2018, 12(2): 21-25 | Back to browse issues page


XML Print


1- PhD of Veterinary Pathology, Yazd Agricultural and Natural Resources Research and Education Center, Yazd, Iran.
2- Department of Pathology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University,Tehran, Iran. , hesarakisaeed@yahoo.com
3- Department of Pathology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University,Tehran, Iran.
Abstract:   (5407 Views)
Background: The aim of this study was to use Japanese quail as an animal model to evaluate the effects of cadmium (Cd) on the ultrastructure and the activity of metallothionein (MT) in the liver and kidneys.
Methods: One hundred male Japanese quails were randomly divided into two Cd and control groups in 2015. The first group received 100 ppm Cd for 60 days in their feed. The ultrastructural changes of the liver and kidneys of Japanese quails were examined by the transmission electron microscope and the concentration of MT in these organs was measured.
Results: The ultrastructural alternations of the liver included distension of rough endoplasmic reticulum (RER), mitochondrial swelling and lack of cristae, nuclear chromatin compression, and margination, the increased fat vacuole and damage to intercellular bindings. The kidneys ultrastructural alterations were mitochondrial swelling and damage to the cristae, the increased number of lysosomes, nuclear chromatin compression and margination, the decreased number of microvilli, and cell death. The concentration of MT and Cd in the liver and kidneys of the Cd group was significantly higher than that of the control group (P<0.05). A positive correlation was observed between the increased concentration of Cd and MT in the liver and kidney tissues.
Conclusion: The use of oral Cd caused an alternation in the ultrastructure and increased the concentration of Cd and MT in the liver and kidneys of Japanese quail.
Full-Text [PDF 990 kb]   (1154 Downloads)    
Type of Study: Research | Subject: Special

References
1. Lisunova L, Tokarev V, Konstantinova N. Physiological effect of cadmium on Japanese quail (Coturnix japonica). Russ AgrSci 2008;34(1):58-60. [DOI:10.3103/S1068367408010217]
2. Salińska A, Włostowski T, Oleńska E. Differential susceptibility to cadmium-induced liver and kidney injury in wild and laboratory-bred bank voles Myodes glareolus. Archi Environ Contami Toxicol 2013;65(2):324-31. [DOI:10.1007/s00244-013-9896-2]
3. Sant'Ana M, Moraes R, Bernardi M. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response. EnvironRes 2005;99(2):273-7. [DOI:10.1016/j.envres.2005.06.003]
4. McFarland C, Bendell-Young L, Guglielmo C, Williams T. Kidney, liver and bone cadmium content in the Western Sandpiper in relation to migration. J Environ Monitor 2002;4(5):791-5. [DOI:10.1039/b206045k]
5. Joseph P. Mechanisms of cadmium carcinogenesis. Toxicolo Appl Pharmacol 2009;238(3):272-9. [DOI:10.1016/j.taap.2009.01.011]
6. Li J-L, Li S, Tang Z, Xu S. Oxidative stress-mediated cytotoxicity of cadmium in chicken splenic lymphocytes. Toxicol Lett 2010;196:S122. [DOI:10.1016/j.toxlet.2010.03.429]
7. Cigánková V, Almášiová V, Holovská K. Morphological Changes in Duodenal Epithelium of Japanese Quail after Chronic Cadmium Exposure. PolJ Environ Stud 2010;19(2):275-82.
8. Thophon S, Pokethitiyook P, Chalermwat K, Upatham ES, Sahaphong S. Ultrastructural alterations in the liver and kidney of white sea bass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ toxicol 2004;19(1):11-9. [DOI:10.1002/tox.10146]
9. Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 2009;238(3):215-20. [DOI:10.1016/j.taap.2009.03.026]
10. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Heal R 2014;24(4):378-99. [DOI:10.1080/09603123.2013.835032]
11. Ladhar-Chaabouni R, Machreki-Ajmi M, Hamza-Chaffai A. Use of metallothioneins as biomarkers for environmental quality assessment in the Gulf of Gabès (Tunisia). Environ Monit Assess 2012;184(4):2177-92. [DOI:10.1007/s10661-011-2108-5]
12. Karimi O, Hesaraki S, Mortazavi SP. Histological and Functional Alteration in the Liver and Kidney and the Response of Antioxidants in Japanese quail Exposed to Dietary Cadmium. Iranian Journal of Toxicology 2017;11(3):19-26. [DOI:10.29252/arakmu.11.3.19]
13. Scheuhammer A, Cherian MG. Quantification of metallothioneins by a silver-saturation method. Toxicol Appl Pharmacol 1986;82(3):417-25. [DOI:10.1016/0041-008X(86)90277-2]
14. Scheuhammer A, Templeton D. Metallothionein production: similar responsiveness of avian liver and kidney to chronic cadmium administration. Toxicology 1990;60(1-2):151-9. [DOI:10.1016/0300-483X(90)90169-H]
15. Scheuhammer A. The dose-dependent deposition of cadmium into organs of Japanese quail following oral administration. Toxicol Appl Pharmacol 1988;95(1):153-61. [DOI:10.1016/S0041-008X(88)80014-0]
16. Cosson RP. Relationships between heavy metal and metallothionein-like protein levels in the liver and kidney of two birds: the greater flamingo and the little egret. Com Biochem Physiol 1989;94(1):243-8. [DOI:10.1016/0742-8413(89)90173-4]
17. Stewart F, Furness R, Monteiro L. Relationships between heavy metal and metallothionein concentrations in lesser black-backed gulls, Larus fuscus, and Cory's shearwater, Calonectris diomedea. Archi Environ ContamToxicol 1996;30(3):299-305. [DOI:10.1007/BF00212287]
18. Włostowski T, Dmowski K, Bonda-Ostaszewska E. Cadmium accumulation, metallothionein and glutathione levels, and histopathological changes in the kidneys and liver of magpie (Pica pica) from a zinc smelter area. Ecotoxicology 2010;19(6):1066-73. [DOI:10.1007/s10646-010-0488-x]
19. Kukner A, Colakoglu N, Kara H, Oner H, Özogul C, Ozan E. Ultrastructural changes in the kidney of rats with acute exposure to cadmium and effects of exogenous metallothionein. Biol Trace Elem Res 2007;119(2):137-46. [DOI:10.1007/s12011-007-0049-1]
20. Sendelbach LE, Klaassen CD. Kidney synthesizes less metallothionein than liver in response to cadmium chloride and cadmium-metallothionein. Toxicol Appl Pharmacol 1988;92(1):95-102. [DOI:10.1016/0041-008X(88)90231-1]
21. Chishti MA, Rotkiewicz T. Hepatic and renal ultrastructural changes in cockerels exposed to cadmium chloride and subsequent interaction with organophosphate insecticide. J Environ Pathol Oncol 1993;12(1):35-45.
22. Holovská K, Sobeková A, Almášiová V, Cigánková V. Morphological Changes in the Liver and the Response of Antioxidant Enzymes after Turkeys' Chronic Exposure to Cadmium. Pol J Environ Stud 2013;22(5):1371-9.
23. Hesaraki S, Gharagozlou M, Amoli JS, Bokaee S, Vaighan AJ. Histopathological and ultrastractural changes of kidneys in response to cadmium chloride toxicity in broiler chickens. J Vet Res 2010;65(4):281-8.
24. Casalino E, Calzaretti G, Sblano C, Landriscina C. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicol 2002;179(1-2):37-50. [DOI:10.1016/S0300-483X(02)00245-7]
25. Prozialeck WC, Edwards JR. Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharm ExpTher 2012;343(1):2-12. [DOI:10.1124/jpet.110.166769]
26. Abdel-Moneim AM, Said KM. Acute effect of cadmium treatment on the kidney of rats: biochemical and ultrastructural studies. Pak J Biol Sci 2007;10(20):3497-506. [DOI:10.3923/pjbs.2007.3497.3506]
27. Cannino G, Ferruggia E, Luparello C, Rinaldi AM. Cadmium and mitochondria. Mitochondrion 2009;9(6):377-84. [DOI:10.1016/j.mito.2009.08.009]
28. Yang H, Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 2015;16(1):1484-94. [DOI:10.3390/ijms16011484]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.