TY - JOUR T1 - Comparative Effect of Silymarin and D-Penicillamine on Lead Induced Hemotoxicity and Oxidative Stress in Rat TT - JF - IJT JO - IJT VL - 11 IS - 3 UR - http://ijt.arakmu.ac.ir/article-1-560-en.html Y1 - 2017 SP - 11 EP - 18 KW - D-Penicillamine KW - Hemotoxicity KW - Lead Poisoning KW - Oxidative Stress KW - Silymarin N2 - Background: This study was performed to investigate the adverse effects of acute lead intoxication on hemogram, erythrocyte osmotic fragility and oxidant/antioxidant status and the probable ameliorating effect of silymarin in comparison to d-penicillamine. Methods: Forty-eight albino rats were divided in 8 groups and received the following treatments in a 10 day experiment in Shahid Chamran University of Ahvaz, southwest Iran in 2015. Group 1: Normal saline as control; Group 2: 25 mg/kg lead acetate, intraperitoneally (IP) for the last 5 days; Group 3: 100 mg/kg D-penicillamine, IP for the last 5 days; Group 4: 200 mg/kg silymarin, orally for 10 days; Group 5, 6, 7 and 8: In addition to lead, they received D-penicillamine, for the last 5 days, silymarin for 10 days, a combination of silymarin for 10 days and D-penicillamine for the last 5 days, and silymarin for the last 5 days, respectively. Results: Lead exposure induced a significant microcytic anemia accompanied by a significant elevation in total leukocyte, lymphocyte and neutrophil counts. Erythrocyte superoxide dismutase (SOD) and glutathion peroxidase (Gpx) activities were significantly increased along with a significant elevation of malondialdehyde (MDA) concentration in lead treated rats. Activities of SOD and Gpx were significantly alleviated by silymarin administration for 10 days while both D-penicillamine and silymarin could significantly reduce MDA concentration. Conclusion: Acute lead exposure induced significant leukocytosis and anemia that was associated with increased activity of erythrocyte antioxidant enzymes and lipid peroxidation. Silymarin in contrast to D-penicillamine treatment was more effective in preventing lead-induced oxidative stress in erythrocytes. M3 10.29252/arakmu.11.3.11 ER -