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Background: In light of severe and growing shortages of clean water and the rising 
environmental pollution in many countries, seawater desalination has been an effective 
method to produce freshwater. Cationic membranes have enabled environmental scientists to 
effectively remove toxic heavy metals from wastewater and to regenerate freshwater.

Methods: We used a novel method, involving electro- and physico-chemical membranes to 
successfully remove toxic heavy metal ions (copper & chromium) from wastewater samples. 
Specifically, Fourier-transform infrared spectroscopy, field emission scanning electron 
microscopy, surface wettability, flux, selectivity and electrical resistance measurements were 
applied to conduct this study. 

Results: The obtained results illustrated relatively uniform foaming of the modified membranes. 
Also, electron microscopic images indicated almost even distribution of the particles. The 
dada indicated that applying polydopamine layer and incorporating nanofibers in monomer 
solution caused surface hydrophilic enhancement. Also, increased carbon nanofibers loading 
ratio to 0.07% raised the ionic flux. The data also showed a higher capacity in the modified 
membranes for the removal of copper and chromium ions from the wastewater samples. 
Although the surface modified membranes displayed a higher flux and lower permselectivity 
to some extents, utilizing nanoparticles led to a steady trend of ion elimination. Generally, 
carbon nanofibers incorporation to the membrane surface modified samples up to 0.1% weight, 
resulting in nearly a constant areal electrical resistance.

Conclusion: The novel method developed by this study is an excellent candidate with high 
potential for the removal of toxic heavy metal ions from wastewater samples.
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Intrpduction

ver the past decade, the environmental 
pollution and the severe shortage of wa-
ter resources have grown considerably. It 
is very clear that seawater desalination 
is considered as a worthy method of re-
generating freshwater suplies for public 

consumption [1, 2]. In recent years, advanced functional 
ion exchange membranes (IEM) prepared with nano-
particles have provided an excellent opportunity among 
various fields in industries and human life, for the separa-
tion of various types of liquid and gas contaminations [3, 
4]. Membrane-based seperations have been developed 
rapidly to generate clean water from various waste re-
sources due to their greatly promising advantages [5, 6].
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Reverse osmosis (RO) technology has received much 
attention globally, among all other water desalination 
methods [7]. However, recently RO developement has 
become limited due to the environmental problems aris-
ing from the resultant concentrates [8]. Alternatively, 
electrodialysis (ED) has been preferred for the treatment 
of salty wastewaters, in which greater dilute brackish 
water is produced from the efficiency perspective, as 
an appropriate choice. The main reasons are its non-
polluting and environmental friendliness compared to 
RO and thermal methods [9-12]. The ED and membrane 
deionization methods utilize ion exchange membranes 
to produce fresh water, involving materials with charged 
groups. Developing an effective IEM requires improved 
seperation properties, such as permselectivity, ionic con-
ductivity and chemical stability [13]. 

Nanocomposite ion exchange membranes are prepared 
by incorporating particle additives into polymeric mem-
branes. These products have demonstrated considerable 
advantages for their mechanical strength and seperation 
charactristics, compared to the homogeneous counter-
parts [14]. Recently, typical additives include carbon 
nanotubes [15], silica [16], graphene-based nanomate-
rials [17], and copper ferrit [18]. However, more recent 
studies, using IEM for wastewater desalination, have 
been concerned with the rational design of nanopore 
memranes. As indicated by a number of recent studies 
[19-22], the most ion diameters in salty wastewaters vary 
from 0.4 to 0.9 nm [17], while the size of small organic 
molecules ranges 1−2 nm. In this context, the optimal size 
of membrane nanopores should be 0.9-1 nm to reach a 
high permselectivity for salt ions and organic molecules.

Further, utilizing nanoparticles at higher percentages 
can result in undesireable challenges, which may dimin-
ish the electrochemical characteristics of the resultant 
IEM [19, 20]. In recent years, application of polydo-
pamine (PDA) has recieved significant attention in the 
process of membrane modification [21, 22]. Dopamine 
monomer is freely oxidized and polymerizes to cre-
ate a crosslinked PDA [23]. An earlier study [24] has 
found that surface modification of membranes based 
on polyethylene (PE), polyvinylidene fluoride (PVDF) 
and polytetrafluoroethylene (PTFE) with polydopamine 
(PDA) may increase their hydrophilicity [21]. Also stud-
ies have demonstrated that the interspaces between the 
accumulated PDA nanoaggregates can make nanopores 
sized 0.5 to 2 nm, in which transport mechanism can be 
controlled by the formation of PDA membranes [24]. 

Aim of the study: This study aimed at developing a 
novel electrodialysis method to remove toxic heavy met-
als, such as copper and chromium, from wastewaters. 
We used polyvinylchloride (PVC) due to its desireable 
properties, mainly the chemical and biological resis-
tance, and its easy processing.

Novelties of the study: Since PVC membranes show 
low permeability and high selectivity [25], PDA may 
control and modify the seperation properties, improve 
the permeability and selectivity of PVC-PDA-CEMs. It 
can be obtained by the incorporation of such materials, as 
carbon nanofiber (CNF) to achieve a novel doublelayer 
cationic exchange Membrane (DLCEM). Other advan-
tages of filtration with CNF membranes are attributed 
to their porous and interconnected structure, large sur-
face area to volume ratios, and the submicron pore sizes. 
These features allow cationic exchange membranes to be 
permeable with superior filtration efficiency [26]. 

Materials and Methods 

Materials: All solvents and reagents were commer-
cially available and used per the suppliers’ instructions. 
Polyvinylchloride (PVC; S-7054) was purchased from 
BIPC (Tehran, Iran), and used as a polymerbinder. Tetra-
hydrofuran (THF; 72.11g/g mol) was utilized as the base 
solvent. Dopamine hydrochloride and carbon nanofiber 
(CNF), used as the nanofiller, were purchased from Sig-
ma-Aldrich. (Darmstadt, Germany).

Preparation of doublelayer cationic exchange mem-
brane: The cationic exchange membranes (CEM), used 
as the substrate, were prepared by casting solution pro-
cedure. The PVC polymer, used as the main body,was 
dissolved in THF (1:20; w/v). Next, powdered resin par-
ticles (Amberlyst 15, >1.7 meq/g; Merck Inc., Germany) 
was added to the polymer solution at equal ratio (w/w). 
To break up the particle aggregates evenly, the mixture 
was sonicated for 90 min on an ultrasound apparatus 
(Parsonic, 28 KHz; Tehran, Iran). The solution was then 
casted on glass plates and were left at room temperature 
to complete dryness.

To make the ultimate modified membranes, dopamine 
hydrochloride powder and varying ratios of CNF, as 
the filler, were dissolved in 30 mL deionized water and 
sonicated for 2 hr. See details in Table 1. The clumps of 
PVC-CEMs with the area of 12.56 cm2 were prewetted 
in deionized water for 1 hr, and immersed into the pre-
pared solution at pH 10 for dopamine polymerization on 
the membrane surface. Also, a few drops of galic acid 
(GA) was added to the solution as the crosslinking agent. 
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The reaction continued for 3 hours at 90°C. Finally, the 
surface modified DLCEMs were rinsed with deionized 
water to clean the surface from the alkaline substances.

Membrane characterization: The surface morphol-
ogy, structure and uniformity of the CEMs were exam-
ined under electron microscopy (FESEM, model: MI-
RA3TESCAN-XMU; Razi Foundation, Tehran, Iran). 
Also, the samples were chemically characterized by a 
single beam Fourier transform infrared spectrophotom-
eter (FTIR, Galaxy series 5000). To evaluate the surface 
hydrophilicity, hydrophobicity, photocatalystic effects 
and surface self-cleaning of the membranes’ contact an-
gel, these features were measured in deionized water at 
room temperaure.

Water content: The samples were dissolved in deion-
ized water for 24 hr to measure the water uptake (10-4g), 
using an OHAUS apparatus (New Jersey, USA). The 
membranes’ wet weight (Wwet) was determined after 
removing the extra water droplets on a Wattman paper 
filter. Wet membranes were dried in an oven at 70°C for 
4 hr, after which the water content was determined based 
on Equation 1 as follows [27, 28]:
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3 
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Where is the transport number of each counter ion [30, 31].

Electrical resistance: The membranes were placed 
in a cell contaning electrolyte solution to determine the 
initial electrical resistance (R1). Then, the second resis-
tance (R2) was measured, utilizing the apparatus without 
a sample. Finally, the membrane resisitance was deter-
mined, using the following Equations 4 and 5:

4. Rm=R1-R2

5. r=RmA

Where “r” is the real resistance and “A” is the surface 
area.

Rsults and Discussion

Characterization of the membranes

Morphological study: Figure 2 illustrates the FTIR 
spectra of PVC-PDA-DLCEM membranes. The spec-
trum for each sample was prepared to better describe 
the analysis of bonding fomation. The results indicated 
that the bonds at 3200-3500/cm were attributeable to 
the OH and NH groups in the modified membranes, and 
the presence of polydopamine on the surface. The peaks 
identified near the 1500 cm-1 and 1600 cm-1 represent the 
dopamine in the membranes, and denote the aromatic 
rings in its molecule. Also the peak at 1636 cm−1 is at-
tributed to the OH symmetrical stretching vibration [32, 
33], and the peak at 1197.69 cm-1 is related to the car-
bon-chloride bonds in the PVC. The carbone-nitrogen 
bonds in the dopamine provide for the partial inter-chain 
interactions [34]. It sould be noted that the CH2 and CF2 
groups in PVC are characterized in 1330–1429 cm−1 and 
1117–1250 cm−1 areas of the plots, respectively [35, 36].

The FESEM images illustrated in Figures 3 and 4 de-
fine the structural homogeneity, unifomity and integrity 
of the double-layer membranes with surface modifica-
tions, and incorporated additives. The resin particles and 
CNF additives were uniformly distributed on the mem-
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branes’ surfaces. It is worth noting that the incorporation 
of nanofibers into the membranes casting solution (Fig-
ure 3 C, M3 sample) caused the formation of cavities and 
voids. These occurred due to the sudden appearance of 
CNF additives and the increased nanofibers loading ratio 
up to 0.3% of the weight. This led to the development of 
sample, with a high concentration of CNF additives in 
the casting solution, which improved the integrity of the 
nanofibers’ agglomeration (Figure 3 D).

Figure 4 represents the increase in surface roughness 
of the membranes modified with dopamine, which had 
negative effect on the antifouling property [37]. In this 
study, it was noted that the most optimal loading ratio of 
dopamine was achieved by a correlation between surface 
hydrophilicity and roughness.

Water contents: Table 2 presents the water contents 
of the membranes we developed, and the effects of in-
corporating PDA and CNF in them. The increasing trend 
of water uptake may be related to the hydrophilic nature 
of PDA and nanofibers versus the hydrophobicity of the 
membrane surface [38]. Results in Figure 3 indicate that 
a rise in the nanoparticle concentration in the membranes 
icreases their water content. Thus, it may be concluded 
that the increase in the structural heterogeneity of the 
membranes may be linked to the presence of nanofibers 
(Figure 3) [39]. By further increasing the amount of the 
CNF nanofibers from 0.07% to 0.1%, the membranes’ 
water content showed a declining trend. It is likely that 
adding similar materials to the membranes’ matrix may 
lead to further decline in the water uptake capacity [40].

Removal of heavy toxic metals: As shown by the data 
presented in Figure 5, both M2 and M3 membranes had 
a greater capacity for the removal of Cu2+ and Cr2+ com-
pared to M1. The higher efficiency of the membranes in 
the removal of the toxic ions, compared to M1, may be 
due to the greater hydrophilicity of PDA surface modi-

fication, and presence of –NH and –OH groups. Also, 
the increased porosity of the memberanes due to incor-
porating nanofibers, improves their ability to eliminate 
the toxic heavy metal ions from the wastewater samples. 
The electrostatic exclusion of the toxic ions by the nega-
tively charged membranes’ surface is another reason for 
the observed improvement in their efficiency [41, 42]. 

As shown in Figure 5, with further increase in the nano-
fiber loading ratio of the membranes, the capacity to up-
take and began to decline. This change in behavior may 
be due to the declining trend in the water content, sec-
onday to a higher CNF loading ratio (Table 2). Also, the 
nanofibers agglomeration led to lower porosity at the site 
due to a lower adsorption behavior [34, 43]. Further, a 
higher ionic valence was likely to cause the greater ions 
repulsion from the membrane surface. 

The elimination of the toxic ions increases by a rise in 
the valence of co-ions. Since the removal of the heavy 
metal ions improves with changes in the hydrated radius 
and charges of the anions, they lead to lower ions diffu-
sion into the nanofibers and membrane surface. Indeed, 
the ionic removal capacity improves with an increase 
in the valence of co-ions and hydrated radius, because 
the ions repulsion occurs better at higher ionic valences. 
Also a high hydrated radius combined with lower ionic 
radius lead to ions lower diffusion into the nanoparticles 
and membranes surface. Therefore, Cr2+ with a higher 
hydrated radius and lower ionic radius than those of the 
Cu2+ is believed to have a higher removal capacity for 
ions than does Cu2+. This is likely to be caused by the 
steric hindrance effects and the ions difficulty in passing 
across nanoparticles [41, 44]. 

The permselectivity: As reflected by the data in Table 
3, lower permselectivity for compared to the unmodified 
membrane , can be attributed to the enhanced water con-
tent, which may lead to a decline in the co-ions percola-

Table 1. Composition of the CEM samples

Membrane Sample (MX) Membrane Sample Dopamine (W/W) CNF (W/W)

M1 PVC-CEM 0.00/100 0.00/100

M2 PVC--DLCEM 7.00/100 0.00/100

M3 PVC-PDA-CNF-DLCEM1 7.00/100 0.07/100

M4 PVC-PDA-CNF-DLCEM2 7.00/100 0.10/100

M5 PVC-PDA-CNF-DLCEM3 7.00/100 0.30/100

Abbreviations: M: Membrane; CEM: Cation exchange membrane; PVC: Polyvinyl chloride; PDA: Polydopamine; DLCEM: Double 
layers cation exchange membrane; CNF: Carbon nanofiber.

Seidypoor A et al. Electrodialysis Cation Exchange Membrane Remove Toxic Heavy Metal Ions. Iran J Toxicol. 2023; 17(1):35-44

January 2023, Volume 17, Number 1

http://ijt.arakmu.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en


39

tion. Under such conditions, greater amounts of water 
uptake can facilitate the ionic passage through the path-
ways [18]. With an increase in the CNF concentration in 
the casting solution, the permselectivity remain almost 
constant, although has shown a greater reduction com-
pared to . This behavior may also be attributed to the wa-

ter content decline, as reflected in Table 2. The filling of 
ion pathways by the CNF can narrow down the channels. 
Thus, the ionic agent groups transcend ion percolation, 
which may finally result in an increase in permselectivity 
or at least keep them constant.

Table 2. Water content of the membranes developed in this study.

Membrane Sample (MX) Membrane Sample Water Content (%)

M1 PVC-CEM 33.24

M2 PVC--MMCEM 36.77

M3 PVC-PDA-MMCEM1 45.54

M4 PVC-PDA-MMCEM2 36.64

M5 PVC-PDA-MMCEM3 60.90

Abbreviations: M: Membrane; CEM: Cation exchange membrane; PVC: Polyvinyl chloride; PDA: Polydopamine; DLCEM: 
Double layers cation exchange membrane; CNF: Carbon nanofiber.

Table 3. Permselectivity for the prepared membranes.

Membrane Sample (MX) Permselectivity

M1 >96

M2 >87

M3 >86

M4 >83

M5 >81

M: Membrane
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Ionic permeability and flux: As illustrated in Figure 6, membrane surface modification with PDA increased 
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both the ionic permeability and flux. This may be due to 
the hydrophilic properties of PDA and controlled inter-
spaces between the accumulated PDA and nanoaggre-
gates [21, 24]. Furthure, the membrane ionic permeabil-
ity and flux increased with a rise in the CNF nanofibers’ 
loading ratio up to 0.07% in weight. This may be as-
sociated with the appropraite water content, and ionic 
pathways formation in the membranes. With greater 
increases in the nanofiber concentration from 0.07% to 
0.3%, the ionic permeability and flux began to decline. 
This may be due to the lower percentage of water con-
tent. This event may also result from narrow channel for-
mation restricting ion transport through the membranes. 
Moreover, this may also be due to nanofibers agglomera-
tion with higher concentration of nanofibers in the cast-
ing solution, decreasing the membranes charge density.

Electrical resistance: Figure 7 displays the 
samples’areal electrical resistance (ER). As seen in the 
Figure, the membranes surface modification with PDA 
plus the CNF incorporation to the surface up to 0.1% 
resulted in nearly a constant areal electrical resistance. 
This may be due to appropraite antifouling potential and 
the greater hydrophilicity of PDA [38]. With a greater 
increase in CNF nanofibers concentration in the modi-
fied layers up to 0.3%, the membranes’ electrical resis-
tance increases clearly, likely due to restriction against 
the oinic transport. The rise in the samples heterogeneity 
in the presence of added nanofibers increased the ionic 
transport but decreased the resistance (up to M3). With 
further increases in the CNF loading ratio and decline 
in the water content (Table 2), the porous spots can be 
surrounded by nanofibers, hence a decline in the ionic 
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transport. Therefore, under such conditions, the electri-
cal resistance rises with further increases in the nanofi-
bers concentration in the modified layers.

Conclusions

The surface hydrophilicity of the samples increased 
in the presence of PDA together with PVC-PDA-CNF. 
The modified membrane developed in this study offers 
a greater sodium flux compared to that achieved by un-
modified membranes. Also the modified membranes had 
appropriate water content, higher permeability and ion 
exchange capacity. Application of membranes with the 
surfaces modified with PDA can improve the elimina-
tion efficiency of toxic heavy metal ions from waste-
waters. In general, PVC-PDA-DLMs in lower loading 
ratio of CNF are desireable for water desalination and 
removal of heavy metal ions from wastewaters.
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