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Background: Antiaris africana has been shown to protect against several neurotoxins. This study 
investigated the neuroprotective effect of the ethylacetate fraction of A. africana (EFA) against 
sodium azide neurotocity (NaN3). 
Methods: The corpora striata from the brains of 30 male Wistar rats were removed and incubated 
with varying concentrations of EFA in the presence or absence of NaN3. The protective effect of 
EFA was assessed by measuring the concentrations and activities of different mitochondrial 
respiratory enzymes (MRE) (NADH cytochrome C reductase, NADH succinate dehydrogenase, 
succinate cytochrome C reductase), neurotransmitters (acetylcholinesterase), reduced glutathione, 
malondialdehyde, protein carbonyl, lactate dehydrogenase, and monoamine oxidase. 
Results: The results indicated that NaN3 inhibited the activities of the MRE as compared to that 
of the controls (P<0.05).  It released lactate dehydrogenase from the striata, increased the activity 
of acetylcholinesterase, caused oxidative stress, and increased monoamine oxidase activity as 
compared to those of the control (P<0.05). The observed toxicity effect of NaN3 was prevented by 
all of the administered concentrations of EFA. 
Conclusion: Our current findings support the fact that A. africana fraction was able to protect the 
mitochondrial enzymes involved in the respiratory chain, improve the redox status and prevent 
leakage of enzymes from the brain tissue, which demonstrated the efficacy of A. africana in 
preventing the toxic effect of NaN3 on rat brain cells and tissue. 
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Introduction 
Sodium azide (NaN3) is a neurotoxin that is 

metabolized to nitric oxide, initiating its toxic effects 
[1, 2]. This compound inhibits the activity of 
cytochrome C oxidase (complex IV), a 
mitochondrial enzyme. The findings make some 
scientists classify NaN3 as a mitochondrial toxin [3]. 
A major feature of neurodegenerative diseases is a 
decrease in the activity of respiratory enzymes, such 
as cytochrome C oxidase. This has enabled 
neuroscientists to produce neurodegenerative 
diseases in experimental animals using NaN3 [4]. 
Biochemical observations during the inhibition of 
mitochondrial respiratory enzymes, such as 
depletion of ATP, generation of free radicals, and 
incomplete oxidation of glucose for energy 
ultimately lead to a cascade of events, culminating 
at loss of neurons [5-7].  

Exposure of brain tissue to NaN3 is known to 
activate the release of excitotoxins due to 
impairments in mitochondrial function. In addition, 

the disruption of metabolic and cellular disturbances 
by NaN3 can lead to the destruction of neural 
synapses [8], memory impairment, and neuronal cell 
death, as observed in neurodegenerative diseases [9-
11]. Sodium azide, a colorless powder, is often used 
in automobiles and airplanes as part of the safety 
airbags and ejectors. Concerning the NaN3 toxicity, 
it readily crosses the blood-brain barrier where it 
binds to enzymes that contain Fe3+, such as 
catalase, cytochrome C oxidase, and peroxidase. 
These enzymes play important roles in neutralizing 
free radicals and preventing oxidative stress [12]. 
Exposure to NaN3 causes respiratory irritation, 
while patients exposed to NaN3 develop 
hypothermia, hypotension, and bradycardia, which 
may lead to death if not quickly treated within 12hr 
[13-16]. 

Despite the health challenges posed by NaN3, 
there is no approved drug to neutralize its toxic 
effects. However, medicinal plants can provide good 

https://ijt.arakmu.ac.ir/
https://ijt.arakmu.ac.ir/
http://dx.doi.org/10.61186/IJT.17.2.833.2
http://dx.doi.org/10.61186/IJT.17.4.1
https://orcid.org/0000-0003-2345-0461
https://orcid.org/0000-0002-8391-7820
https://orcid.org/0000-0002-4029-1864
https://crossmark.crossref.org/dialog/?doi=10.61186/IJT.17.4.1


 

2 
Neuroprotec�ve Effect of Ethylacetate Frac�on of An�aris Africana. Iran J Toxicol. 2023; 17(4):1-8 

October 2023, Volume 17, Number 4 

alternatives in combating the poisonous effects of 
NaN3. Studies have reported the efficacy of 
quercetin and other flavonoids in acting as an 
antidote against NaN3 toxicity [17-19]. Antiaris 
Africana is one of the underutilized medicinal plants 
with various pharmacological properties. We have 
previously investigated the antidotal effect of A. 
Africana against neurochemicals, such as cyanide 
and rotenone [20, 21].  

Upon the identification of the major flavonoids in 
the ethylacetate fraction of A. Africana [21], we 
aimed to investigate the potential effect of the 
ethylacetate fraction of A. Africana against the NaN3 
toxicity to the striata regions in male Wistar rats. 

Materials and Methods 
Preparation of the Extract: Fresh leaves of A. 

africana were harvested from the Forest Research 
Institute of Nigeria (FRIN) at Ibadan. An adequate 
sample of the plant was identified and authenticated 
by the Department of Botany, Obafemi Awolowo 
University, Ile Ife, Nigeria.  The fresh A. Africana 
leaves were dried in open air and regularly weighed 
until a constant weight was reached. The dried 
leaves were then blended and filtered to obtain a fine 
powder. The powder was dissolved in a mixture of 
methanol/water (80:20) for 72 hours with constant 
daily stirring. The sample was then filtered and 
lyophilized to obtain a dried powder assigned as the 
crude fraction. This fraction was partitioned, using 
four different solvents in order of polarity (hexane < 
dichloroform <ethylacetate < methanol). The 
resultant fractions were tagged as hexane (HAA), 
dichloromethane (DAA), ethylacetate (EAA), and 
methanolic (MAA) fractions of A. africana. 

Experimental Animals: Thirty male Wistar rats 
were purchased from the animal breeding units of, 
University of Benin. The animals were allowed to 
acclimatize in the laboratory environment for two 
weeks, where they had free access to water and food 
ad libitum. 

Tissue Preparation: After the initial 2-week 
period, the rats were sacrificed via mild anesthesia 
and the brains were excised and carefully rinsed in 
1.15% potassium chloride (KCl) solution. The 
striata were carefully sliced out from the rat brains, 
weighed and homogenized in phosphate buffer 
(0.1M at pH 7.4). The procedure for the preparation 
of the striatal mitochondria after fractionation based 
on the method of Klein-Schwartz, et al. [16]. 

Experimental Design: The neurotoxicity was 
induced by incubating the striata samples with 4mM 
NaN3 according to a modified method described by 
Gao, et al. [14]. The treatment involved the addition 
of varying concentrations of the ethyl acetate 
fraction (5-50μg/ml) as described by an earlier study 
[15]. 

Lipid Peroxidation Inhibitory Activity: The lipid 
peroxidation inhibitory activity was evaluated by 
measuring the formation of thiobarbituric acid 

reactive substances (TBARS) according to the 
method described by Okhawa, et al. [22]. The 
concentration of malondialdehyde (MDA) in the 
solution was determined according to the method of 
Adam-Vizi and Seregi [23]. The reduced glutathione 
content of the mixture was determined as previously 
described by Jollow, et al. [24]. The protein carbonyl 
levels in the samples were quantified according to 
the method described by Floor and Wetzel [25]. 

Evaluation of Acetylcholinesterase: The activity 
of acetylcholinesterase (AChE) was assessed based 
on the modified method of Ellman, et al. [26]. 
Briefly, the reaction mixture contained 0.1 ml 
DTNB and 2.6 ml phosphate buffer (0.1 M, pH 8.0), 
0.04 ml of striatal homogenate, and incubated for 5 
min. Acetylthiocholine iodide (0.075 M) was added 
after incubation and the rate of hydrolysis was 
measured at 420nm continuously for three min. the 
AChE activity was calculated and expressed in 
μmol-1 min-1 mg protein-1. 

Evaluation of Lactate Dehydrogenase Activity: 
The effect of the ethylacetate fraction on the activity 
of lactate dehydrogenase (LDH) in the striata 
samples was determined according to a previously 
described valid method [27]. 

Determination of Mitochondrial Enzymes 
Integrity: The evaluation of NADH-succinate 
dehydrogenase (NSD) and NADH-succinate 
reductase (NSR) activities were measured according 
to the method of Spinazi, et al. [28], while the 
activity of NADH-cytochrome C reductase (NCR) 
was measured according to the method described by 
Kollareth, et al. [29].  

Determination of Monoamine Oxidase Activity: 
The monoamine oxidase activity (MAO) was 
measured using the method developed by Holt, et al. 
[30], and described by Chaudhary and Parvez [31, 
32]. 

Data Analyses: The study data were analyzed 
using GraphPad Prism (version 6.02). The data from 
the groups were compared using a one-way analysis 
of variance (ANOVA). Duncan’s test was utilized as 
the descriptive statistical test. The data were 
presented as the means ± standard deviations (SD) 
of the replicates in each group. The statistical 
significance level was set at P<0.05. 

Results 
Figure 1 represents the effect of the ethyl acetate 

fraction of A. Africana on lactate dehydrogenase 
(LDH) activity on the rat striata intoxicated with 
sodium azide. The fraction at the used 
concentrations significantly mitigated the release of 
LDH from the rat brain tissue as compared to that of 
the positive control group (P<0.05). The 
neuroprotective effect was found to be dose-
dependent. 

Figure 2 shows the effect of the ethyl acetate 
fraction of A. Africana and NaN3 on the 
acetylcholinesterase activity in the rat striatal 
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samples. The data indicated that NaN3 significantly 
increased the activity of AChE as compared to that 
of the negative control group (P<0.05). All of the 
fraction’s concentrations prevented the rise in the 
AChE activity in response to NaN3 toxicity against 
the rat striatal samples (P<0.05). The NaN3 fraction 
at all concentrations significantly inhibited the 
acetylcholinesterase activity in the striatal samples 
as compared to that observed in the untreated group 
(P<0.05). 

Figure 3 reveals that NaN3 reduced the 
glutathione (GSH) concentration significantly in the 
striatal samples as compared to that of the control 
group (P<0.05). The fraction also increased the GSH 
(P<0.05). All concentrations of the ethylacetate 
fraction significantly increased the concentration of 
GSH as compared to that observed for the untreated 
positive group (P<0.05). There was no significant 
difference with respect to the inhibitory effect 
among the various concentrations of the fraction 
used. 

Figure 4 demonstrates that NaN3 significantly 
increased the activity of lipid peroxidation as 
measured by the concentration of malondialdehyde 
(MDA) in the rat striatal samples compared to the 
controls (P<0.05). The fraction at all concentrations 
significantly prevented the lipid peroxidation 
induced by NaN3 in the rat striatal samples 
(P<0.05).  

Figure 5 reveals the effect of the fraction on the 
protein carbonyl levels in the striatal homogenates 
following exposure to NaN3. This toxin caused a 
significant rise in the protein carbonyl levels in 
response to the administered fraction as compared to 
that observed for the control group. All of the 
fraction’s concentrations effectively inhibited the 
generation of protein induced by NaN3 (P<0.05). 

Figure 6 reveals the efficacy of various 
concentrations of the fraction to reverse the 
inhibitory effect of NaN3 on the rat brain’s NADH-
succinate dehydrogenase (NSD). The data 
demonstrate that NaN3 at the administered 
concentration significantly inhibited the NSD 
activity in the striatal homogenate compared to that 
of the control group (P<0.05). The treatment with 
various concentrations of the fraction significantly 
increased the NSD activity compared to that 
observed for the rat group that received NaN3 only 
(P<0.05). 

Figure 7 demonstrates the effect of various 
concentrations of A. Africana fraction on the NADH 
cytochrome C oxidase activity in the striatal 
homogenate in response to NaN3. The data 
indicated that NaN3 at the given concentrations 
caused a significant inhibition of NADH 
cytochrome C oxidase activity compared to that of 
the controls (P<0.05).  

Figure 8 presents the role of various 
concentrations of the A. africana fraction in 
reversing the inhibitory effect of NaN3 on the 

succinate cytochrome C reductase (SCR) levels in 
the rat striatal homogenate samples. The data 
indicated that NaN3 caused a significant inhibition 
of SCR as compared to that of the control group 
(P<0.05). The findings also showed that the fraction 
at all concentrations except for 5µg, was able to 
significantly prevent the inhibition of SCR in a dose-
dependent manner (P<0.05). 

Figure 9 demonstrates the effect of the A. Africana 
fraction in reversing the inhibitory effect of NaN3 on 
monoamine oxidase (MAO) in the striatal 
homogenate. The NaN3 caused a significant increase 
in the MAO activity. The results indicated that the 
fraction at 40 and 50µg only was effective at 
inhibiting the rise in the MAO activity induced by 
NaN3 (P<0.05). 
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Figure 1. Protective effect of the A. africana fraction on lactate 

dehydrogenase (LDH) activity of the rats’ striata samples 
exposed to sodium azide (NaN3).  The data are presented as the 
means ± standard deviations per goup (n=5). *P<0.05: NaN3 vs 
Control, #P<0.05: NaN3 vs EFA. NC = negative control; PC = 
positive control. 
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Figure 2. Anticholinesterase activities of Ethyl acetate fraction 

of Antiaris africana in the striatum region of rats exposed to NaN3 
neurotoxicity. The data are presented as means ± standard 
deviations per group (n=5). *p<0.05: NaN3 vs Control, #p<0.05: 
NaN3 vs EFA. NC = negative control; PC = positive control. 
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Figure 3. Protective effect of Ethyl acetate fraction of A. 

africana on reduced GSH concentration in the striata of rats 
exposed to NaN3 neurotoxicity. The data are presented as means 
± standard deviations per group (n=5). *P<0.05: NaN3 vs 
Control, #P<0.05: NaN3 vs EFA. NC = negative control; PC = 
positive control. 
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Figure 4. Protective effect of Ethyl acetate fraction of A. 

africana on lipid peroxidation in the striata region of rats exposed 
to NaN3 neurotoxicity. Data are presented as means ± standard 
deviations per group (n=5). *P<0.05: NaN3 vs Control, #P<0.05: 
NaN3 vs EFA. NC = negative control; PC = positive control. 
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Figure 5. The protective Effect of the fraction on protein 

carbonyl in the positive control group on the rats striata exposed 
to NaN3. The data are presented as means ± standard deviations 
per group (n=5). *p<0.05: NaN3 vs Control, #p<0.05: NaN3 vs 
EFA. NC = negative control; PC = positive control. 
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Figure 6. The effect of the A. africana fraction on the rat 

brain’s NADH-succinate dehydrogenase exposed to NaN3. The 
data are presented as means ± standard deviations per group 
(n=5). *P<0.05: NaN3 vs Control, #P<0.05: NaN3 vs EFA. NC = 
negative control; PC = positive control. 
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Figure 7. The effect of the A. africana fraction on NADH-

cytochrome C reductase activity on the rat striata exposed to 
NaN3. The data are presented as means ± standard deviations per 
group (n=5). *P<0.05: NaN3 vs Control, #P<0.05: NaN3 vs EFA. 
NC = negative control; PC = positive control. 
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Figure 8. The effect of the A. africana fraction on Succinate-

cytochrome C reductase on rat striata exposed to NaN3. The data 
are presented as means ± standard deviations per group (n=5). 
*P<0.05: NaN3 vs Control, #P<0.05: NaN3 vs EFA. NC = 
negative control; PC = positive control. 
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Figure 9. The effect of the A. africana on the monoamine 

oxidase (MAO) activity in rat striata exposed to NaN3.  The data 
are presented as means ± standard deviations per group (n=5). 
*P<0.05: NaN3 vs Control, #P<0.05: NaN3 vs EFA. NC= 
negative control; PC=positive control. 

 

Discussion 
Studies have widely reported the neurotoxicity of 

NaN3 especially in Alzheimer’s disease secondary 
to the toxicity in animal models [31-34]. As an 
inhibitor of mitochondrial cytochrome C oxidase, 
which leads to ATP depletion, it is one of the models 
that help discover new drugs to treat mitochondria-
related disorders [35]. This study investigated the 
neuroprotective effect of the ethylacetate fraction of 
A. Africana against typical neurotoxins, such as 
NaN3.  This was attempted because currently there is 
no report on the potential effect of A. Africana in 
protecting against sodium azide neurotoxicity. 
Specifically, we evaluated the activities of nine 
different enzymatic or non-enzymatic processes in 
the rat brain striatal samples in response to NaN3 
toxicity in the presence or absence of the A. Africana 
fraction. 

Lactate dehydrogenase (LDH) is a glycolytic 
enzyme involved in energy production, and is 
compartmentalized in the striata under normal 
conditions [36]. However, under neuronal damaging 
condition, LDH is released from the tissue [37]. 
Patients with Alzheimer disease (AD) have high 
levels LDH in their blood circulation due to 
neuronal cytotoxicity, hence its role as a diagnostic 
marker for AD [38]. Our results indicated that NaN3 
caused a significant increase in the striatal LDH 
level compared to that of the control group (Figure 
1). This finding suggests that NaN3 induced LDH 
leakage from the rats’ striata. This finding is 
consistent with those reported by two earlier studies 
[39, 40]. The former studies had suggested that 
NaN3 might have a significant role in causing 
mitochondrial damage likely due to the generation 
of ROS and alterations in the bioenergetic processes 
of neurons. 

Investigation of acetylcholinesterase (AChE) 
activity is one of the hallmarks of diagnosing AD, 

since the high activity of this enzyme has 
consistently been reported in the brain tissues of 
patients with AD [41]. This enzyme is involved in 
the deactivation of acetylcholine, a major 
neurotransmitter involved in brain functions. 
Patients challenged with AD have low Ach, causing 
memory impairment. Therefore, chemicals and 
toxins that increase AChE activity are good 
condidates for generating AD in animal models [42]. 
From the experiment, NaN3 caused a significant 
increase in the AChE level in the rat striatal samples 
at the given doses (Figure 2). This finding is 
consistent with that of other investigations, where 
the use of NaN3 increased the choline concentration 
in the brain. Choline is the product of the catalytic 
breakdown of acetylcholine, which suppresses the 
reconstitution of the neurotransmitter, acetylcholine. 

Reduced glutathione is the major non-enzymatic 
antioxidant in the brain, the deficiency of which has 
been linked to a number of neurodegenerative 
diseases [43]. It serves as an electron donor to free 
radicals, neutralizing them, and thereby preventing 
them from damaging biomolecules [44]. However, 
under oxidative stress, the GSH concentration is not 
enough to neutralize the generated ROS or RNS. 
The oxidative effect of NaN3 was reflected in the 
current study, as it significantly reduced the GSH 
concentration (Figure 3). Once the GSH level is low, 
the generated ROS readily interacts with 
biomolecules to gain stability, which is reflected in 
the high concentrations of MDA and PC. The 
importance of GSH in preventing and maintaining 
healthy cells cannot be overemphasized. It is likely 
that GSH is included in food supplements or added 
to drug regimens toward the treatment and slowing 
down the neurodegenerative disease progression 
[45, 46]. 

Consistent with previous reports [47, 48], the 
current study demonstrated that exposure of the 
striatal regions to NaN3 at the given dosage triggered 
the generation of various reactive species. 
Specifically, we documented high levels of 
malondialdehyde and protein carbonyl, which are 
products of lipid and protein oxidation [49]; see 
Figures 4 and 5. A major mechanism of NaN3 
toxicity is the generation of reactive species 
secondary to mitochondrial damages. These 
unstable reactive species are attracted to 
biomolecules, such as lipids and proteins, which are 
rich in electrons to form stable molecules. During 
the process, they damage functional molecules that 
can be detrimental to the well-being of the 
organisms or humans. Pathological investigations of 
the brain in patients, suffering from 
neurodegenerative diseases have shown increased 
levels of MDA and PC, indicating that reactive 
oxygen species play important roles in the etiology 
of certain neurological diseases. 

Further, NaN3 has been proven to be toxic to 
mitochondria, since the inhibition of cytochrome C 
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oxidase (CCO) disrupts the cellular respiratory 
chain, leading to mitochondrial damages. In 
addition, it results in ATP depletion and other 
biochemical processes that ultimately cause cell 
injury and death [50]. As a mitochondrial toxin that 
inhibits CCO, we planned to investigate the effect of 
NaN3 on the rats’ brain tissue. We discovered that 
NaN3 caused a significant decline in the activities of 
NADH succinate dehydrogenase (NSD), NADH 
cytochrome C reductase (NCR), and succinate 
cytochrome C reductase (SCR) (Figures 6-8). The 
findings strongly suggest that NaN3 induces a 
significant decline in the oxidative phosphorylation 
process in the mitochondria of the rat’s brain striatal 
region. Based on our findings, the mechanism of 
NaN3 action starts from the inhibition of CCO. This 
prevents electron transfer between cytochrome and 
other molecules, such as NADH and succinate, and 
then leads to the generation of free radicals, such as 
superoxide dismutase and hydroxyl groups.  

Monoamine oxidase (MAO) is an important 
enzyme, and its activity levels have been implicated 
in the etiology of neurodegenerative diseases [51, 
52]. Its activity has been reported to deplete the 
neuronal cells of hormones, such as dopamine and 
serotonin by oxidizing them [53]. The results 
indicate that NaN3 at the administered dose 
significantly increase the MAO activity. 

Deficient levels of antioxidants system will enable 
the radicals to attack other respiratory enzymes, 
causing energy depletion and mitochondrial injury. 
While there is no approved antidote against NaN3, 
the search for a suitable neutralizer of NaN3 toxicity 
is still underway. Using the ethylacetate fraction of 
A. africana, which is rich in polyphenols [21] as a 
NaN3 antagonist, demonstrated that it was effective 
in inhibiting the toxicity against the rats’ striata.  

The fraction improved the antioxidant status in the 
striatal regions as observed by the higher GSH 
concentrations compared to that of the untreated 
group. Similarly, it resulted in low MDA and PC 
concentrations, compared to that of the untreated 
group. The findings suggest that the A. Africana 
fraction can inhibit lipid peroxidation by acting as 
an electron donor and preventing the reactive 
species from oxidizing proteins. This prevents 
oxidative-related striatal injury in the rat brains. The 
antioxidant effects of the A. africana fraction has 
been reported previously [16, 54], hence supporting 
its ability to reduce oxidative stress. These 
properties are highly likely to be responsible for the 
pharmacological activity of A. africana in the 
treatment or prevention of cancer, microbial 
infections, and some brain-related disorders.  

In addition, the fraction prevented the leakage of 
LDH from the striatal regions after exposure to 
NaN3. In this context, natural plant antioxidants 
have been effective in enhancing the bioenergetic 
processes in animal models [55, 56]. Thus our 
findings provide novel evidence that the A. africana 

fraction contains important phytochemicals able to 
prevent losses of bioenergetic enzymes. The 
inhibitory effect of EFA on MAO activity is a 
reflection of the potential of A. africana to improve 
brain function and another scientific confirmation in 
support of the ethnomedicinal applications of the 
plant in treating neurological disorders [53]. 

Lastly, earlier investigations have shown that A. 
africana fractions act as antidote in preventing the 
neurotoxicity of chemicals, such as rotenone and 
cyanide that are linked to mitochondrial damage [7, 
21]. Consistently, our current findings support the 
fact that the A. africana fraction was able to protect 
the mitochondrial enzymes involved in the 
respiratory chain. This fact was also reflected in the 
improved activities of NSR, NCR, and SCR as 
compared to those of the untreated group. As 
reported by another investigation on the mechanism 
of protection [53], the fraction used in the current 
study is likely to improve the associated enzymatic 
activities by preventing NaN3 from inhibiting 
important enzymes. Alternatively, the fraction may 
block the NaN3 metabolism into such active 
compounds as nitric oxide (NO) or scavenge the NO 
generated from NaN3, thereby blocking NO from 
binding to mitochondrial respiratory enzymes.  

Conclusions 
The findings of the current study support the fact 

that A. africana fraction was able to protect the 
mitochondrial enzymes involved in the respiratory 
chain. This fact was also reflected in the improved 
activities of NSR, NCR, and SCR as compared to 
those found for the untreated group. As reported by 
other investigations on the mechanism of protection, 
the fraction used in this study is likely to improve 
the associated enzymatic activities by preventing 
NaN3 from inhibiting important enzymes. 
Alternatively, the fraction may block the NaN3 
metabolism into such active compounds as nitric 
oxide (NO) or scavenge the NO generated from 
NaN3, thereby blocking NO from binding to 
mitochondrial respiratory enzymes. Elucidation of 
further biochemical and toxicological mechanisms 
involved in the neuroprotective effect of the 
ethylacetate fraction of Antiaris africana awaits 
future research. 
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