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ABSTRACT 
Background: The present study compared lethal concentrations (LC50-
96 h) of CdCl2, CrCl3, and Pb (NO3)2 between two scaled and scaleless 
freshwater fish species: Cyprinus carpio (Cyprinidae) and Pangasius 
hypophthalmus (Pangasiidae).  
Methods: The experimental fishes were obtained from fish markets/ponds 
with average lengths and weights of approximately 11.68 ±1.92 and 
9.8±1.9 cm, and 25.92±6.3 and 18.61±3.22 g for C. carpio and P. 
hypophthalmus, respectively. The fishes were exposed to different 
concentrations of cadmium (Cd) (0, 10, 20, 40, 80, 100, 120, 200 mg L−1) 
lead (Pb) (0, 20, 40, 50, 60, 90, 150 mg L−1), and chromium (Cr) (0, 5, 10, 
20, 30, 40 mg L−1) for 96 h. Physicochemical parameters, such as 
dissolved oxygen, pH, and temperature of aquaria as well as mortality rate 
of the fishes, were monitored daily.  
Results: The 50% lethal concentrations (LC50-96 h) of CdCl2, CrCl3, and 
Pb (NO3)2 for P. hypophthalmus were found at 64.89, 7.46, and 48.06 mg 
L−1, and those of CdCl 2, CrCl 3, Pb (NO3)2 for C. carpio were detected at 
84.8, 17.05, and 77.33 mg L−1. The ratios of heavy metal toxicity factors 
(TF) were greater for common carp compared to those for the catfish.  
Conclusion: Our preliminary findings suggest that common carp C. 
carpio with higher LC50 (and LC100) values appears to be more tolerant to 
heavy metals exposure than the catfish (P. hypophthalmus). This may be 
due to the resistance to the heavy metals through protection from the 
carp's scaled body versus scaleless body of the catfish. 
Keywords: Cadmium, Chromium, Lead, Fish Scales, 50% Lethality. 
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INTRODUCTION 

Heavy metals pollution of the aquatic 
environment has been marked as a serious 
health concern, which its introduction into 
these ecosystems happens through various 
routes such as industrial effluents and 
wastes, agricultural pesticide run-off, 
domestic garbage dumps, and mining 
activities (1). A potential threat for aquatic 

organisms is contamination arisen from 
being exposed to significant amounts of 
heavy metals, which at high concentrations 
can cause harmful effects on metabolic, 
physiological, and biochemical systems of 
fishes (2-5) together with long-term eco-
toxicological effects (6). Thus, these 
metals are a matter of environmental and 
health concern because of their toxic 
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potential to be accumulated in food chain 
(7). 

Toxicity testing has been widely 
used as a tool to identify suitable 
organisms as a bio-indicator and to derive 
water quality standards for chemicals. It is 
also considered an essential tool for 
assessing the effects and fate of toxicants 
in aquatic ecosystems (8). Because toxicity 
studies quantify an organism’s response to 
a biologically active material (9) and are 
useful in determining water quality, it is, 
therefore, crucial to restore and resolve 
metal pollution through environmental 
monitoring. Fish absorb dissolved or 
available metals and can, therefore, serve 
as a reliable indication of metal pollution 
in an aquatic ecosystem (10).  

Common carp (Cyprinus carpio) 
accounts for an important farmed species. 
Hence the optimum culture conditions and 
caveat on severe aftermath of 
environmental pollutants including such 
heavy metals as Cd, Cr, and Pb can 
effectively help improve cultivation of this 
valuable species. The scaleless fish, 
Pangasius hypophthalmus (sutchi or 
striped catfish), is native to the Mekong 
River drainage, which emerged as a major 
species for aquaculture purposes research 
focus, outside of tropical regions of South 
East Asia, and can be successfully cultured 
in the western tropics. Briefly, both species 
are of aquaculture interest, which have 
achieved commodity status on world 
seafood markets. Furthermore, 
development of this catfish culture industry 
has faced difficulties partly related to the 
limited knowledge of biology, ecology, 
and physiology reported in some cultivated 
stocks (11,12).  

Both lethal and sub-lethal 
concentrations of heavy metals determine 
the sensitivity of individual organisms 
across species. Such changes differ from 
metal to metal, from species to species, and 
from one experimental condition to 
another. The exact causes of death due to 
metal poisoning are multiple and depend 
on time-concentration (13). The 

susceptibility of fish to a particular heavy 
metal is also a very important factor for 
LC50 values (14). Conducting 96-h LC50 
tests, therefore, makes it possible to 
measure the susceptibility and survival 
potential of organisms to particular toxic 
heavy metals. Because the 96-h LC50 
values of fish vary from species to species 
and from metal to metal (15-17), it would 
be appealing to scrutinize variations in 
metal accumulation and toxicity in catfish 
with that in a species like carp from similar 
environment for various purposes (18). 
Therefore, the purpose of this study was to 
determine and compare the LC50 of CdCl2, 
CrCl3, and Pb (NO3)2 in two scaled C. 
carpio and scaleless P. hypophthalmus fish 
species, and to compare the level of 
sensitivity in each species from exposure 
to different Cd, Cr, and Pb concentrations. 

MATERIALS AND METHODS 
P.hypophthalmus was purchased 

from local aquarium shops and C. carpio 
was obtained from Nasr Fish Culture pond 
(Sari, Iran) with approximate total length 
of 8.0-14.0 and 7.0-12 cm, respectively. 
The fishes were transferred to aquarium 
room located at SANRU. Prior to toxicity 
testing, the fishes were acclimatized for 
one week under laboratory conditions 
(25±1o C with 12h light: 12h dark). Water 
quality parameters (TDS = 600 mg L−1, pH 
= 6.75, EC = 1 ds/m, DO = 5-8 mg L−1) 
were measured during the experiment. The 
experimental aquaria were aerated through 
air stones. Cd, Cr, and Pb heavy metals in 
the forms of cadmium chloride 
(CdCl2.H2O, BDH), chromium chloride 
(CrCl3.6 H2O, APLICAM), and lead (II) 
nitrate (Pb (NO3)2, MERK) were used as 
toxicants.  

Acute cadmium, lead, and chromium 
toxicity experiments were performed using 
different concentrations of Cd (0, 10, 20, 
40, 80, 100, 120, and 200 mg L−1), Pb (0, 
20, 40, 50, 60, 90, 150 mg L−1), and Cr (0, 
5, 10, 20, 30, 40 mg L−1) during 96 h. 
Metal solutions were prepared by diluting 
of a stock solution with well water. Each 



Comparison of Lethal Concentrations …                                      Iranian Journal of Toxicology 

Volume 6, No 18, Autumn 2012; http://www.ijt.ir 674 

concentration contained six fish with one 
replicate each. There was a simultaneous 
control group (n= 10; with no heavy metal 
additions) together with the heavy metal 
treatments, keeping all other conditions 
alike. The concentration of each heavy 
metal caused  50% mortality in fish for 96 
h was taken as the LC50 value, calculated 
by Finney’s Probit Analysis (in SPSS, V. 
16). During the toxicity test, the fishes 
were not fed. The numbers of dead fish 
were counted daily and removed 
immediately from the aquaria. The degree 
of fish susceptibility to each heavy metal 
was determined as toxicity factor (TF). 
This factor is calculated by the ratio of 
LC50 of a metal in one fish species to that 
in the other, i.e.: LC50 C. carpio/ LC50 P. 
hypophthalmus, at different intervals 
tested. Then the LC50 of the two species 
was statistically compared through linear 
regression and evaluated by one-sample t-
test (e.g. 19). To do this, first, the TF ratios 
were obtained by estimating LC50 of each 
examined metal for each species at 
different times. Next, one-sample t-test 
was employed using SPSS software. 

RESULTS 
The 50% lethal concentrations 

(LC50-96h) of CdCl2, CrCl3, Pb (NO3)2 for 
Pangasius hypophthalmus were 64.89, 
7.46, and 48.06 mg L−1, and those for 

Cyprinus carpio were 84.8, 17.05, and 
77.33 mg L−1, respectively. 

Table 1 (A and B) shows lethal 
concentrations (LC50- 96 h) of Cd, Cr, and 
Pb in common carp and sutchi (striped) 
catfish, respectively, at four durations. It is 
evident that the required concentrations of 
all the examined heavy metals to reach 
lethal doses are far greater in common carp 
compared with those required in the 
catfish.  

Time-response mortality of the two 
fish species resulting from different 
concentrations of individual heavy metals 
(Cd, Cr, and Pb) are presented in Tables 2 
to 4. The Cd-response of the sutchi catfish 
(P. hypophthalmus) began at 40 mg L−1 
(48 and 72 h), which displayed higher 
mortalities with rising levels of cadmium 
especially at 24 and 48 h. The common 
carp (C. carpio) initially responded to a Cd 
concentration of 80 mg L−1 (96 h), which 
exhibited rather elevated mortalities with 
increasing levels of cadmium, especially at 
120 and 200 mg L−1. Both species were 
equal in zero mortality in the control 
groups. 

Table 2 also indicates that LC100 
values for the common carp (C. carpio) 
and sutchi catfish (P. hypophthalmus) were 
at 120 and 100 mg L−1 of Cd (after 48 h), 
respectively. 

 
Table1. Lethal concentrations (LC50-96 h, mg L−1) of Cd, Cr, and Pb for common carp (C. 

carpio) (A) and sutchi catfish (P. hypophthalmus) (B) 
 
              A)                                                                            B) 

Pb Cr Cd Duration 
(h) 

 
Pb Cr Cd Duration 

(h) 

156.4 27.43 128.24 24 
 

480.64 67.84 287.47 24 

86.57 17.57 83.63 48 
 

228.7 33.67 137.45 48 

62.22 9.8 69.74 72 
 

96.19 21.24 131.38 72 

48.06 7.46 64.89 96 
 

77.32 17.05 84.8 96 
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Table 2. Mortalities of P. hypophthalmus and C. carpio recorded at different concentrations 
(mg L−1) of Cd during 96 h 

200 120 100 80 40 20 10 Control 

Cd concentration (mg L−1) 
 
                                   
                          Duration (h)  

        P. hypophthalmus (sutchi catfish) 
3 4 4 2 0 0 0 0 24 
2 2 1 1 1 0 0 0 48 
1 0 1 0 1 0 0 0 72 
0 0 0 0 0 0 0 0 96 
        C. carpio (common carp) 
0 3 2 0 0 0 0 0 24 
3 3 1 0 0 0 0 0 48 
0 0 1 0 0 0 0 0 72 
3 0 0 3 0 0 0 0 96 

 
Table 3. Mortalities of P. hypophthalmus and C. carpio recorded at different concentrations 

(mg L−1) of Cr during 96 h 

40 30 20 10 5 Control 
Cr concentration (mg L−1) 
 
                              Duration (h) 

      P. hypophthalmus (sutchi catfish) 
0 0 3 1 2 0 24 
1 0 1 3 1 0 48 
3 3 2 2 0 0 72 
0 2 0 0 0 0 96 
      C. carpio (common carp) 

0 3 1 1 0 0 24 
1 3 1 0 0 0 48 
4 1 1 0 0 0 72 
1 0 0 1 0 0 96 

 
Table 4. Mortalities of P. hypophthalmus and C. carpio recorded at different concentrations 

(mg L−1) of Pb during 96 h 

150 90 60 50 40 20 Control 
Pb concentration (mg L−1) 
 
                          Duration (h) 

       P. hypophthalmus (sutchi catfish) 
3 0 1 1 0 0 0 24 
2 3 2 0 2 0 0 48 
1 1 2 0 0 0 0 72 
0 2 0 2 0 0 0 96 
       C. carpio (common carp) 

0 1 1 0 0 0 0 24 
1 0 2 0 0 0 0 48 
4 2 0 0 0 0 0 72 
0 2 0 1 0 0 0 96 
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The mortality of P. hypophthalmus 
initiated at a Cr concentration of 5 mg L−1, 
which showed greater fish death as the 
level of chromium was raised. In the 
common carp, on the other hand, a Cr 
density of 10 mg L−1 started fish demise 
and higher Cr levels caused elevated 
mortalities. No fish death was noticed in 
the control groups for both species. Table 3 
indicates that LC100 values for the carp and 
catfish were at 30 and 10 mg L−1 of Cr 
(after 72 h), respectively. 

Concerning lead, the initial response 
of P. hypophthalmus was recorded at 40 
mg L−1 of Pb (48 h; Table 4). Further 
concentrations of Pb produced more 
mortality in the fish. Comparably, C. 
carpio showed primary death at 50 mg L−1 
(96 h) of Pb and continued dying with 
additional levels of Pb. Table 4 also 
indicates that the carp and catfish showed 
equal LC100 values at 90 mg L−1 of Pb 
(after 96 h).  

TOXICITY FACTOR (TF) 
The tested heavy metals were 

significantly different in TF ratios at 
different times (P< 0.05, Table 5) 
indicating that C. carpio required higher 
levels of Cd, Pb, and Cr than P. 
hypophthalmus to reach LC50 values. The 
descending trends of Cd, Pb, and Cr LC50s 
at different intervals were not significant in 
C. carpio (P>0.05). In P. hypophthalmus, 
Cd and Pb LC50s did not significantly 
reduce with time (P>0.05) while the 
decrease in Cr LC50 from 24 to 96 h was 
significant (P<0.05). 

 

Table 5. Toxicity factors (TFs) in C. 
carpio and P. hypophthalmus subjected to 

the heavy metals at different times 

Pb Cr Cd Duration (h) 

3.07 2.47 2.31 24 
2.64 1.91 1.64 48 
1.54 2.16 1.88 72 
1.6 2.28 1.3 96 

DISCUSSION 
This study was done to assess the 

sensitivity of the scaled Cyprinus carpio 
and the scaleless Pangasius 
hypophthalmus fish species to cadmium, 
chromium, and lead through determination 
of acute 96-h LC50 values induced from 
exposure to different concentrations of the 
introduced heavy metals. As shown in 
Table 1 (A and B), C. carpio and P. 
hypophthalmus displayed contrasting 
tolerances to the applied densities of Cd, 
Cr, and Pb. The data clearly indicate that 
considerably more densities of the heavy 
metals are needed to induce dose-response 
mortality in the common carp than those 
required in the catfish. This implies that C. 
carpio should be more tolerant of the 
toxicant burden in comparison with P. 
hypophthalmus. This characteristic, in 
addition to species-specificity of responses 
(e.g.15), might have arisen from the fact 
that because a function of fish skin is to 
provide an effective protective barrier 
against environmental chemicals, and as 
common carp (and scaled fish in general: 
20) have thicker epidermis covered by 
scales, they can effectively shield the 
animal against extra permeation of 
toxicants. Also, it is generally accepted 
that factors such as skin thickness and 
scale coverage are the determinants in the 
percutaneous (via skin) uptake rate of 
toxicants in fish (21). In brown bullhead 
(Ameiurus nebulosus), an important 
percentage of mercury uptake from the 
water occurred because of its scaleless 
permeable skin (22). Further evidence 
presented suggests protection against 
heavy metals toxicity by scales in three 
freshwater species making them tolerant to 
lethal concentrations of lead or mercury 
(23). The scales buffered the pH of lead 
nitrate solution and removed lead (and 
mercury) from water. The same authors 
also studied (24) the reduction of lead 
nitrate toxicity in water due to the presence 
of scales. They additionally reported 
reduced toxicity of 27 metals following 
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filtration through scales and concluded that 
the keratin in scales may be the most 
important ectodermal secretion in 
absorbing metals and in providing 
protection against their toxic levels. 
Likewise, the sorption and removal of 
heavy metals by fish scales was 
investigated (25, 26, 27); metals 
accumulation in fish scales is increased 
during exposure (28). On the other hand, a 
general conclusion (reviewed by 21) 
deduced that scaled and scaleless fish 
showed the same general pattern of 
response (deterioration and death) to sub-
lethal chronic metal concentrations. 
Similarly, there was not a significant 
difference between field samples of 
Cyprinus carpio and Clarias lazera 
(scaleless) in Cd concentrations of their 
comparable tissues (29). The above 
discrepancies might have occurred because 
toxicity and accumulation of heavy metals 
in fish are mainly dependent upon metals  
concentration and exposure period, 
although such other factors as water  
salinity, pH, hardness and temperature, 
ecological needs, size and age, life cycle, 
capture season, and feeding habits of fish 
also play significant roles (4).  

Comparison of the numbers of dead 
fishes at different levels of the heavy 
metals indicate that lethality of the metals 
lies in order of Cr > Pb > Cd. Accordingly, 
chromium was more toxic than cadmium 
and lead to both fishes and P. 
hypophthalmus showed more sensitivity 
than C. carpio to all the metals. This 
corroborates the review of (14) stating that 
the acute toxicity of chromium to fish 
reveals the differences in the 96h-LC50 
values between fish species, which can be 
attributed to the complicated metal-
induced changes in the physiology and 
survival of aquatic organisms under 
metallic stress.  

Lead has been reported as the most 
toxic element to aquatic invertebrates, 
algae and fish at the lowest concentration 
(30, 31), the toxicity of which is strongly 
influenced by lower water hardness (32). 

Moreover, the concentration of heavy 
metals in fish is related to several factors 
such as physicochemical properties of the 
water (e.g. water hardness: 33) and the 
presence of other ions in the environment 
(34, 35). The high total water hardness 
(TDS: ca. 600 mg L−1) in this study, 
therefore, could have probably reduced Pb 
toxicity rendering it an intermediate 
lethality. Similar order of toxicities and 
bioaccumulations (Cr > Pb > Cd) have 
been reported in two freshwater and five 
coastal fish species (36, 37). 

Cadmium belongs to the most toxic 
water contaminants. Lethal values (96 h 
LC50) for fish range from 0.5 µg dm-3 (38) 
to 21.1 mg dm-3 (39) depending both on 
intrinsic factors such as fish species or age, 
and on environmental conditions (40). 
Exposure of C. carpio to 0.560 mg L−1 
cadmium [Cd (NO3)2] killed all fish in 8 
days (41) whereas 1.5 – 6 mg L−1 of lead 
(PbNO4) for two months caused no 
mortality in this species (42). In catfish 
Heteropneustes fossilis, LC50 of cadmium 
chloride was found to be 50.41 mg L−1 (4), 
which tends to proximate that (>60 mg 
L−1) detected in this study. Reported LC100 
of Cd as 86.32 mg L−1 (43) is almost near 
that (100 mg L−1) found in this study (43).   

The ratios of heavy metal toxicity 
factor (TF) calculated in here were greater 
for common carp compared to those for the 
catfish. Conversely, relatively higher 
copper TF ratio was found for the catfish 
Clarias gariepinus (TF= 1.19) as opposed 
to that estimated in tilapia Oreochromis 
niloticus (TF= 1.0) (20). This disparity 
might be due to the physicochemical 
characteristics of the test media (39, 44), 
species and ages, and their sensitivity rates 
to the tested heavy metals.  

CONCLUSION 
The development and use of toxicity 

tests provide types of data regarding toxic 
responses of different fish species, which 
could be more effectively used in 
predictive toxicology and risk assessment. 
The common carp (C. carpio) with higher 
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LC50 (and LC100) values appears to be 
more tolerant to heavy metals exposure 
than sutchi catfish (P. hypophthalmus). 
This attribute may be due to the increased 
resistance to the heavy metals through 
protection from the carp's scaled body 
versus scaleless body of the catfish. 
However, further studies are recommended 
to confirm it because various factors 
influence toxicant responses in natural and 
controlled ecosystems.  
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