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Background: Exposure to toxic compounds is a significant risk factor for developmental language 

disorder (DLD) in children. This review article aimed to evaluate and discuss the adverse effects of four 

groups of major toxic compounds, such as phthalates, cigarette and/or substance smoking, alcohol 

consumption, and exposure to heavy metals on DLD. 

Methods: In this review, we analyzed research data from studies conducted between 1990 and 2024. We 

searched relevant MeSH terms in international databases, resulting in the identification of 312 articles. 

After applying inclusion and exclusion criteria, 42 articles were selected for analysis. 

Results: The evaluated toxic compounds were found to affect children and lead to DLD in them. Two 

main routes of exposure of fetuses and babies to toxic compounds were identified: a) indirect exposure 

through mothers during pregnancy and b) direct exposure after birth. It was observed that essential metals 

for the body's metabolism, such as zinc and selenium, had inverse relationships with DLD, unlike toxic 

metals. 

Conclusion: To minimize the risk of DLD, it is essential to reduce fetus and newborn exposure to toxic 

compounds. We recommend measuring levels of toxic compounds in pregnant mothers' blood during the 

last trimester and again at six months after the babies' birth. Cases with high levels of toxic compounds 

should be followed by clinical and laboratory examinations and appropriate treatment to minimize or 

prevent language development disorders later in children. 
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Introduction
Traumatic brain injury and autism spectrum disorder are 

two medical conditions that can cause language disorders 

in children [1-3]. However, some children experience 

profound language difficulties for no apparent reason, 

known as developmental language disorder (DLD), which 

constitutes 5-7% of the child population [4]. Moreover, 

DLD has been referred to as specific language impairment 

(SLI) in the literature [5]. Children with DLD face 

challenges in communicating with others and 

participating in social activities [6, 7] despite the 

availability of effective linguistic treatments and speech 

therapy methods [8, 9]. Diagnosing DLD in children is 

challenging due to the considerable differences in typical 

language development and the diverse characteristics 

within the DLD community [10]. In addition to 

language deficits, children with DLD may have 

difficulty with auditory comprehension, motor skills, 

working and long-term memory, statistical learning, 

and sustained attention [11-18].  

The exact causes and mechanisms of DLD remain 

unclear. However, this condition is believed to be a 

complex disorder of neurological development. 

Multiple risks, including hereditary and environmental 

factors, impact brain activities and influence the child's 

neural growth and development. The risk factors 

include gender differences, family history, nutrition, 
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breastfeeding, maternal health problems, infections, 

timing, and exposure to toxic compounds through various 

routes [19-23]. This review article is a novel attempt to 

evaluate the impact of exposure to toxic compounds, as 

identified earlier, by searching relevant articles in 

reputable journals and discussing the various relationships 

with DLD in children. 

Materials and Methods 

This systematic review article presents the results of 

studies conducted between 1990 and 2024, as shown in 

Figure 1. Our main task began with determining the most 

significant and frequently used medical terminologies 

associated with the subject. Therefore, the MeSH terms 

were explored in reputable databases, such as Google 

Scholar, Scopus, PubMed, and Web of Science. Initially, 

312 articles were identified, and 42 of them were selected 

for the final analysis based on inclusion and exclusion 

criteria. We used "AND" and "OR" to conduct an 

effective search. Additionally, we reviewed the 

references in the selected articles to ensure their 

relevance to the subject under study. The inclusion and 

exclusion criteria were as follows: 

 Only studies about DLD or SLI were selected, and 

studies related to other speech and language disorders 

were excluded. 

 Only studies that investigated the effect of toxic 

compounds on DLD or SLI were included. 

 Investigations with a small sample size were 

excluded. 

 Articles published in non-authoritative sources were 

also excluded.  

 Articles and reports published on public and non-

scientific websites were not considered.

 
Figure 1. The review flowchart. Step-by-step process of the application of inclusion and exclusion criteria to select the eligible articles for the review 

 

Results & Discussion 

Children are likely to be exposed to toxic and harmful 

compounds at two stages of their lives. The first stage, 

which is indirect, occurs before birth, during the fetal 

period. This event may happen when pregnant mothers 

become exposed to toxic compounds in their environment 

[24]. The second stage, which is direct, occurs after birth 

when growing children are often exposed to toxic 

compounds in their living environment [25]. This brief 

review article presents the roles of the following four 

toxic compounds as the main factors responsible for 

DLD in children before and after birth: 

 Phthalates, 

 Cigarette and Substance Smoke, 

 Alcohol, 

 Heavy Metals. 

Phthalates: These compounds are chemical 
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derivatives commonly found in polyvinyl chloride 

materials, which are often used for enhancing strength and 

flexibility. Phthalates are also utilized as solvents or 

stabilizers in certain pharmaceutical formulations [26]. 

These materials are semi-volatile compounds and are 

found in household dust and ambient air, which enter 

children's bodies through foods [27]. Therefore, they can 

exist in food via plastic bags and are also found in 

pesticides and household products, such as vinyl flooring 

materials [28]. Although phthalates are not often 

considered risk factors, this review explores their 

influence on the endocrine system during fetal 

neurodevelopment. Phthalates can affect fetuses and 

newborn babies through different pathways, and they 

contribute to neurobehavioral and developmental 

disorders in children. Routes of exposure include 

ingestion by pregnant mothers, placental circulation 

before birth [29], and exposure through breast milk and 

other foods consumed after birth [30]. Phthalates are 

semi-volatile compounds, and that is why they exist in 

household dust and ambient air and can enter children’s 

bodies through food [26, 27].  

Reports from several studies have indicated that 

exposure to phthalates may lead to neurobehavioral 

developmental disorders, such as growing aggression in 

children. This compound can also lead to attention 

deficits, depressive symptoms, prevalence of behavioral 

and psychomotor delays, and cognitive deficits in 

children. Other potential problems may be low 

intelligence quotient (IQ), slow memory and processing 

speed, and low scores in perceptual reasoning, working 

memory, and verbal comprehension [31-34]. However, a 

number of studies [35-39] have suggested no relationship 

between exposure to phthalates and cognitive deficits. 

Based on reports from studies, a strong correlation has 

been found between exposure to phthalates during the 

third trimester of pregnancy and language development 

deficits in children [37-39]. 

Based on other studies, exposure to phthalates can lead 

to increased oxidative stress, with its severity being 

dependent on the extent of exposure [40, 41]. 

Additionally, cell culture experiments have demonstrated 

that phthalate exposure can hinder the growth of neurons 

and cause changes in neurological development [42]. 

Administering antioxidant therapy with vitamin E and/or 

melatonin has been found to reduce oxidative stress and 

alleviate the negative effects [23]. Some other studies 

have indicated that specific types of phthalate, along with 

the gender of exposed children, are important factors in 

determining the adverse effects of phthalate. For instance, 

studies conducted by Kim et al. (2011), Weiss (2012), and 

Yolton et al. (2011) have reported stronger effects in male 

infants [34, 43, 44]. Alternatively, T'ellez-Rojo et al. 

(2013) and Whyatt et al. (2012) have reported these 

effects being more prominent in female infants [33, 45, 

46]. Although the direct relationship between phthalates 

and language development is not quite clear, 

disruptions in the hormonal control of brain growth 

could potentially be responsible for the individual’s 

susceptibility to language deficits [23]. 

Cigarette and Substance Smoke: Former studies 

have reported that prenatal exposure to tobacco and 

substance smoke can have significantly harmful 

impacts on the language and cognitive function of 

healthy infants [46, 47]. A review conducted by 

Peixinho et al. (2022) indicated that 57% of the 14 

studies assessed provided direct evidence, while 35% 

offered indirect evidence that smoking impacts 

children's language development [47]. Additionally, 

studies by Eicher, et al. (2013) and Makin, et al. (1991) 

have indicated that the type and amount of maternal 

smoking can greatly affect their children's DLD. 

Specifically, high levels of maternal smoking are likely 

to be associated with severe clinical outcomes in 

children with DLD [48, 49]. However, another report 

has shown that the relationship between cigarette 

smoking throughout gestation and the occurrence of 

DLD in children is not necessarily consistent [23]. 

Studies by Diepeveen, et al. (2017) and Tomblin, et al. 

(1998) have found no relationship between mothers' 

smoking and the severity of their children's DLD [50, 

51]. On the other hand, studies by Calder, et al. (2022), 

Law, et al. (2009), Rudolph (2017), and Tomblin, et al. 

(1997) have demonstrated that women’s smoking 

during pregnancy increases the risk of DLD in their 

children [52-54,19]. 

Cigarette smoke contains toxic compounds, 

including nicotine. Studies [23,19,43-54] have shown 

that nicotine exposure can have harmful effects on 

human neurodevelopment, such as increased neuronal 

death, apoptosis, and suppression of synaptogenesis. 

These effects can lead to long-term changes in the 

hippocampus, somatosensory centers, and prefrontal 

cortex [55, 56]. Magnetic resonance imaging studies on 

human infants, adolescents, and rodents have revealed 

that prenatal nicotine exposure is associated with 

reduced brain volume, particularly in the frontal lobe, 

lateral ventricles, and cerebellar canals [57,58]. 

Further, thinning of the frontal, parietal, and temporal 

cortices can disrupt their microstructure and reduce the 

processing efficiency in the thalamus and white matter 

of the primary cortex [57, 58]. 

The brain's frontal and temporal lobes play a 

significant role in processing language skills. These 

areas are essential for comprehending spoken and 

written words, analyzing sentence structures, and 

processing phonological information in a bottom-up 

manner [59, 60]. Given the above review, it is highly 

likely that exposure to cigarette smoke, especially its 

nicotine, can affect brain development, particularly in 

the cortical regions, which are associated with speech 

[23]. Multiple studies have shown that prenatal 
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exposure to other substances, such as cocaine, heroin, and 

marijuana, is associated with severe impairments in 

various brain functions. These include cognition, auditory 

perception, receptive language, semantic abilities, 

phonological processing, syntactic development, and 

relevant motor skills [61-65]. 

Alcohol Consumption: Alcohol consumption during 

pregnancy by mothers can cause anatomical, cognitive, 

and language development disorders in the fetuses they 

carry [66]. The resultant disorders in infants may 

encompass a wide range of deficits in receptive and 

expressive language abilities, which can negatively 

impact the baby’s vocabulary, grammar, and narrative 

skills [67-71]. Studies that examined the adverse effect of 

moderate alcohol consumption on infant language 

development have yielded inconsistent findings. This is 

likely due to significant variations in the factors associated 

with varying levels of alcohol exposure. Former studies 

conducted by Coggins, et al. (2007), Mattson and Riley 

(1998), Terband, et al. (2018), and Weinberg (1997) have 

reported that children whose mothers consumed alcohol 

during pregnancy were more likely to have speech and 

language disorders [71-73]. Coggins, et al. (2007) have 

reported that alcohol consumption by pregnant mothers 

may result in "negligence" in their children born during 

the same period of pregnancy [71]. 

Conversely, numerous studies conducted between 1990 

and 2014 [51, 74-77] have reported no link between 

maternal alcohol consumption during pregnancy and 

children's speech and language disorders. While drinking 

alcohol at any point during pregnancy can potentially 

hinder the development of neurobehavioral skills, the 

latter half of pregnancy is particularly critical for the 

development of language deficits in newborn babies [70]. 

Further, other studies have indicated that the connection 

between low to moderate prenatal alcohol exposure and 

the neuropsychological outcomes of children born during 

that period is not fully established [78, 79]. 

Two studies conducted in 2004 and 2017 have revealed 

that only children who are exposed to alcohol during the 

first trimester may exhibit an increase in their sensation-

seeking behavior [80, 81]. However, these babies do not 

usually suffer cognitive or language deficits. Since 

alcohol lacks specific receptors in the brain, it is unlikely 

that it selectively impacts any particular brain region [23]. 

DNA methylation plays a role in regulating the expression 

of many genes involved in various neurological functions. 

Such functions include neuronal differentiation, axonal 

guidance, neuronal excitability, neuro-inflammation and 

degeneration, and cell adhesion. All of these processes 

may be affected by alcohol-induced regulatory disruption 

[82]. Additionally, alcohol can alter numerous 

neurotransmitter systems [23]. For example, it can disrupt 

the neurotransmitters involved in inhibiting NMDA, 

which is essential for synaptic plasticity. Moreover, 

alcohol can have adverse effects on the density of specific 

GABAergic neurons, causing damage to outer hair 

cells in the ears and impacting various sensory 

developments [83-86]. 

Exposure to Heavy Metals: Heavy metals are 

chemical elements at high molecular densities and may 

be toxic even at low concentrations. Specifically, heavy 

metal ions, such as mercury (Hg), cadmium (Cd), 

arsenic (As), chromium (Cr), thallium (Ti), and lead 

(Pb), are known to be toxic to humans and animals. 

These elements are the natural components of the 

Earth's crust and cannot be degraded or destroyed. 

They may enter the human body through foods, 

drinking water, and breathing air [87]. As trace 

elements, some other heavy metals, such as copper 

(Cu), selenium (Se), and zinc (Zn), are necessary for 

the metabolism in the human body but may only cause 

toxic effects at high concentrations [87, 88].  

Exposure to heavy metals can lead to language and 

learning disorders. In this context, Pb, Hg, As, and 

aluminum (Al) can have the greatest adverse effects on 

children’s language development [89]. Lead can cause 

disorders in language recognition, auditory attention, 

intellectual function, and hearing function. It may also 

lead to disorders of reading, behavior, and memory in 

humans [90]. Manganese may also be implicated in the 

development of language delay. For instance, a study 

conducted by Wright, et al. (2006) has found that 

children's general intelligence scores, especially their 

verbal IQ scores, are significantly but inversely 

correlated with the level of manganese in their hair 

[91]. Additionally, reduced Se levels can result in 

stuttering, as reported by two former studies [92, 93]. 

Elevated blood levels of heavy metals in children [89] 

may affect language development and other bodily 

functions [89]. Another study conducted recently 

reported that the Zn level in the children’s hair with 

DLD was significantly less than that of healthy 

children. However, there were no significant 

differences in terms of other metals, such as 

magnesium, iron, barium, Pb, and Al, between the two 

study groups [94]. Finally, the level of Zn in the scalp 

hair of children with SLI has been significantly lower 

than that of healthy children [95]. 

Conclusions 

The findings of this brief review indicated that 

exposure to toxic compounds through alcohol 

consumption, smoking, substance abuse, and 

consuming food containing phthalates and toxic metals 

may result in DLD in children. The two main routes of 

contact with these toxic compounds are maternal 

exposure during pregnancy and infant exposure after 

birth. Mothers need to be fully informed about these 

factors to minimize their infants and young children's 

exposure to toxic substances, thereby decreasing the 

likelihood of developing DLD. It is highly 
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recommended that the levels of toxic compounds in 

mothers' blood be measured, especially during the last 

trimester of pregnancy and when their babies are six 

months old. Cases with high levels of toxic compounds 

should then be followed up with relevant clinical and 

laboratory examinations and follow-up. If these measures 

are observed, the chance of DLD in children can be 

prevented or at least minimized. 
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