Write your message
Volume 10, Issue 3 (May-June 2016)                   IJT 2016, 10(3): 19-27 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kumar N, Yadav A, Gulati S, Priya K, Aggarwal N, Gupta R. Effects of GST Polymorphism on Ameliorative Effect of Curcumin and Carvacrol against DNA Damage Induced by Combined Treatment of Malathion and Parathion . IJT 2016; 10 (3) :19-27
URL: http://ijt.arakmu.ac.ir/article-1-466-en.html
1- Department of Biotechnology, Kurukshetra University Kurukshetra, Haryana, India.
2- Department of Biotechnology, Kurukshetra University Kurukshetra, Haryana, India. , ayadav@kuk.ac.in
3- Department of Microbiology, Kurukshetra University Kurukshetra, Haryana, India.
4- Department of Biochemistry, Kurukshetra University Kurukshetra, Haryana, India.
Abstract:   (6389 Views)

Background: Organophosphorus pesticides has been widely used in agriculture fields to control various crop insects and their extensive use pose human life at threat because of their adverse effects on human health. In this study, we checked the effects of GST polymorphism on ameliorative effect of curcumin and carvacrol against DNA damages.

Methods: Comet assay was used to assess the DNA damage and results were expressed as Tail moment. Heparinised fresh blood from healthy individuals was treated with combined concentration of malathion and parathion (i.e. 30 µg/ml of malathion and 2.5 µg/ml of parathion) in presence of combination of curcumin and carvacrol (25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol) in order to observe the ameliorative role of curcumin and carvacrol. Multiplex PCR was performed for GSTM1 and GSTT1 genotyping.

Results: Curcumin in combination with carvacrol (i.e. 25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol) significantly reduced the DNA damage caused by combined action of malathion and parathion which supports their antigenotoxic property. No significant relationship of GSTT1 and GSTM1 polymorphism with genotoxicity of both the pesticides and antigenotoxic potential of curcumin and carvacrol was observed.

Conclusion: Malathion and parathion were genotoxic in human PBL. Curcumin and carvacrol had an antigenotoxic effect against the malathion and parathion while there was not any significant effect of GSTT1 and GSTM1 polymorphism on genotoxicity of these pesticides and antigenotoxicity of curcumin and carvacrol.

Full-Text [PDF 358 kb]   (1427 Downloads)    
Type of Study: Research | Subject: General

References
1. Gennaro G, Zhara A, Marina G, Annabella V, Terrance JK, Lucio GC. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharm 2007; 219: 181– 9. [DOI:10.1016/j.taap.2006.09.016]
2. Wang C, Zhang N, Li L, Zhang Q, Zhao MR, Liu WP. Enantioselective interaction with acetylcholinesterase of an organophosphate insecticide fenamiphos. Chirality 2010; 22: 612– 7.
3. Wagner ED, Mcmillan SM, Plewa MJ. Cytotoxicity of organophosphorus ester (OP) insecticides and cytotoxic synergism of 2-acetoxyacetylaminofluorene (2AAAF) in chinese hamster ovary (CHO) cells. Bull Environ Contam Toxicol 2005; 75: 329–34. [DOI:10.1007/s00128-005-0757-1]
4. Slotkin TA, Seidler FJ. Comparative developmental neurotoxicity of organophosphates in vivo: Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 2007; 72: 232– 74. [DOI:10.1016/j.brainresbull.2007.01.005]
5. Okamura A, Kamijima M, Shibata E, Ohtani K, Takagi K, Ueyama J, Watanabe Y, Omura M, Wang H, Ichihara G, Kondo T, Nakajima T. A comprehensive evalution of the testicular toxicity of dichlorvos in Wistar rats. Toxicol 2005; 213: 129–37. [DOI:10.1016/j.tox.2005.05.015]
6. Brocardo PS, Assini F, Franco JL, Pandolfo P, Muller YM, Takahashi RN, Dafre AL, Rodrigues AL. Zinc attenuates malathion-induced depressant-like behavior and confers neuroprotection in the rat brain. Toxicol Sci 2007; 97:140– 8. [DOI:10.1093/toxsci/kfm024]
7. Giri S, Prasad SB, Giri A, Sharma GD. Genotoxic effects of malathion: an organophosphorus insecticide, using three mammalian bioassays in vivo. Mutat Res 2002; 514: 223– 31. [DOI:10.1016/S1383-5718(01)00341-2]
8. Pamela DM, Clement GY, Paul BT. Malathion-Induced Oxidative Stress, Cytotoxicity, and Genotoxicity in Human Liver Carcinoma (HepG2) Cells. Environ Toxicol 2010; 25(3): 221- 6.
9. Undeger U, Basaran N. Effects of pesticides on human peripheral lymphocytes in vitro: induction of DNA damage. Arch Toxicol 2005; 79: 169– 76. [DOI:10.1007/s00204-004-0616-6]
10. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 2004; 26: 249– 61. [DOI:10.1385/MB:26:3:249]
11. Hoffman H, Speit G. Assessment of DNA damage in peripheral blood of heavy smokers with the comet assay and the micronucleus test. Mutat Res 2005; 581: 105– 14. [DOI:10.1016/j.mrgentox.2004.11.015]
12. Garaj-Vrhovac V, Kopjar N. The alkaline comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation. Mutagenesis 2003; 18: 263– 71. [DOI:10.1093/mutage/18.3.265]
13. Hellman B, Friis L, Vaghef H, Edling C. Alkaline single cell gel electrophoresis and human biomonitoring for genotoxicity: a study on subjects with residential exposure to radon. Mutat Res 1999; 442: 121– 32. [DOI:10.1016/S1383-5718(99)00083-2]
14. Rishi RK. Nutraceutical: borderline between food and drug. Pharma Review 2006.
15. Kalra EK. Nutraceutical-definition and introduction. AAPS pharmSci 2003; 5(3): 27–28. [DOI:10.1208/ps050325]
16. Gao X, Kuo J, Jiang H, Deeb D, Liu Y, Divine G, Chapman RA, Dulchavsky SA, Gautam SC. Immuno-modulatory activity of curcumin: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity and cytokine production in vitro. Biochem Pharmacol 2004; 68: 51-61. [DOI:10.1016/j.bcp.2004.03.015]
17. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharma Physio 2012; 39(3): 283– 99. [DOI:10.1111/j.1440-1681.2011.05648.x]
18. Srinivasan M, Rajendra NP, Menon VP. Protective effect of curcumin on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mut Res: Gen Toxicol Environ Mutagen 2006; 611(1-2): 96–103. [DOI:10.1016/j.mrgentox.2006.07.002]
19. Tuba AK. Ilhami G. Antioxidant and radical scavenging properties of curcumin. Chemico-Biol Interact 2008; 174(1): 27–37. [DOI:10.1016/j.cbi.2008.05.003]
20. Lampronti I, Saab AM, Gambari R. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Int J Oncol 2006; 29: 989– 95. [DOI:10.3892/ijo.29.4.989]
21. Sokmen A, Sokmen M, Daferera D, Polissiou M, Candan F, Unlu M, Akpulat HA. The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother Res 2004; 18: 451– 6. [DOI:10.1002/ptr.1438]
22. Baser KH. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 2008; 14: 3106– 19. [DOI:10.2174/138161208786404227]
23. Horvathova E, Turcaniova V, Slamenova D. Comparative study of DNA-damaging and DNA-protective effects of selected components of essential plant oils in human leukemic cells K562. Neoplasma 2007; 54: 478– 83.
24. Arunasree K. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomed 2010; 17: 581– 8. [DOI:10.1016/j.phymed.2009.12.008]
25. Moorhead PS, Nowell PC, Mellmam WJ, Battips DM, Hungerford DA. Chromosome preparations of leukocytes cultured from human peripheral blood. Expi Cell Res 1960; 20: 613- 6. [DOI:10.1016/0014-4827(60)90138-5]
26. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175: 184– 91. [DOI:10.1016/0014-4827(88)90265-0]
27. Tice RR, Agurell E, Anderson A, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000; 35: 206– 21. https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J [DOI:10.1002/(SICI)1098-2280(2000)35:33.0.CO;2-J]
28. Olive PL, Banath JP, Durand RE. Heterogeneity in radiation induced DNA damage and repair in tumor and normal cells using the comet assay. Radiat Res 1990; 122: 86–94. [DOI:10.2307/3577587]
29. Abdel-Rahman SZ, el-Zein RA, Anwar WA, Au WW. A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett 1996; 107: 229- 33. [DOI:10.1016/0304-3835(96)04832-X]
30. Moore PD, Yedjou CG, Tchounwou PB. Malathion-Induced Oxidative Stress, Cytotoxicity, and Genotoxicity in Human Liver Carcinoma (HepG2) Cells. Environ Toxicol 2009; 25(3): 221- 6. [DOI:10.1002/tox.20492]
31. Xian TL, Yun M, Cui W, Xiao FZ, Da QJ, Chang JH. Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E. J Environ Sci Health Part B 2012; 4: 445– 54.
32. Mathew J, Thoppil JE. Genotoxicity of methyl parathion and antimutagenic activity of salvia officinalis l. (sage) extracts in swiss albino mice. Asian J Pharma Clin Res 2012; 5(2): 164- 70.
33. Falicia LE, Clement GY, Paul BT. Involvement of Oxidative Stress in Methyl Parathion and Parathion-Induced Toxicity and Genotoxicity to Human Liver Carcinoma (HepG2) Cells. Environ Toxicol 2013; 28 (6): 342– 8. [DOI:10.1002/tox.20725]
34. Tiwari H, Rao MV. Curcumin supplementation protects from genotoxic effects of arsenic and fluoride. Food Chem Toxicol 2010; 48: 1234– 8. [DOI:10.1016/j.fct.2010.02.015]
35. Siddique YH, Ara G, Beg T, Afzal M. Protective effect of curcumin against the genotoxic damage induced by tinidazole in cultured human lymphocytes. Acta Pharmaceutica Sciencia 2010; 52: 23- 30.
36. Ahmed T, Pathak R, Mustafa MD, Rajarshi K, Kumar A, Tripathi RSA, BanerjeeBD. Ameliorating effect of N-acetylcysteine and curcumin on pesticide-induced oxidative DNA damage in human peripheral blood mononuclear cells. Environ Monit Assess 2011; 179(1-4): 293- 9. [DOI:10.1007/s10661-010-1736-5]
37. Balakrishnan A, Khalid SAN, Abdullah HAA, Chinnadurai V, Kodukkur VP. Protective Effect of Carvacrol on Oxidative Stress and Cellular DNA Damage Induced by UVB Irradiation in Human Peripheral Lymphocytes. J Biochem Mol Toxicol 2010; 0: 1-11.
38. Ozkan A, Erdogan A. A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Nat Prod Commun 2012; 7 (12): 1557- 60.
39. Falck GCM, Hirvonen A, Scarpato R, Saarikoski ST, Migliore M, Norppa H. Micronuclei in blood lymphocytes and genetic polymorphism for GSTM1, GSTT1 and NAT2 in pesticide-exposed greenhouse workers, Mutat Res 1999; 441: 225– 37. [DOI:10.1016/S1383-5718(99)00051-0]
40. Lucero L, Pastor S, Suarez S, Durban R, Gomez C, Parron T, Creus A, Marcos R. Cytogenetic biomonitoring of Spanish greenhouse workers exposed to pesticides: micronuclei analysis in peripheral blood lymphocytes and buccal epithelial cells. Mutat Res 2000; 464: 255– 62. [DOI:10.1016/S1383-5718(99)00200-4]
41. Park HS, Eun-HH, Kwan-Hee L, Yun-Chul H. Benzo[a]pyrene-Induced DNA-Protein Crosslinks in Cultured Human Lymphocytes and the Role of the GSTM1 and GSTT1 Genotypes. J Korean Med Sci 2002; 17: 316- 21. [DOI:10.3346/jkms.2002.17.3.316]
42. Kumar M, Chauhan LK, Paul BN, Agarwal SK, Goel SK. GSTM1, GSTT1, and GSTP1 polymorphism in north Indian population and its influence on the hydroquinone-induced in vitro genotoxicity. Toxicol Mech Met 2009; 19(1): 59-65. [DOI:10.1080/15376510802399057]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb