Volume 10, Issue 5 (September-October 2016)                   IJT 2016, 10(5): 45-52 | Back to browse issues page


XML Print


1- Department of Pharmacology and Toxicology, Urmia University, Urmia, Iran. , e.zadehhashem@urmia.ac.ir
2- Department of Basic Sciences, University of Tehran, Tehran, Iran.
3- Department of Theriogenology, Urmia University, Urmia, Iran.
4- Department of Biochemistry, University of Tehran, Tehran, Iran.
5- Department of Pharmacology and Toxicology, Urmia University, Urmia, Iran.
Abstract:   (3541 Views)

Background: Co-supplementation of unsaturated fatty acids (FAs) with saturated FAs may decrease the adverse effects of saturated FA-induced lipotoxicity. The objective of the present study was to evaluate the effect of palmitoleic acid (unsaturated fatty acid) on palmitic acid (saturated fatty acid) induced lipotoxicity criteria in the primary culture of adult rat cardiomyocytes.

Methods: Cells were treated with 0.5 mM palmitic acid, palmitoleic acid, palmitic + palmitoleic acids or remained untreated. The values of cellular triacylglycerol (TAG), diacylglycerol (DAG), DNA fragmentation and cellular viability were evaluated over 24 h, 48 h and 72 h time points.

Results: Co-administration of palmitic and palmitoleic acids increased TAG values over 48 h and 72 h time points compared to the palmitic acid (34.37% and 62.79%, respectively; P <0.001), while decreased DAG values (18.85% and 29.42%, respectively; P <0.01). Moreover, palmitoleic acid decreased DNA fragmentation and increased viability when administrated with palmitic acid (P <0.05).

Conclusion: Palmitoleic acid may be beneficial for diminishing adverse effects of palmitic acid in the rat cardiomyocytes through alterations in the molecule signaling levels. 

Full-Text [PDF 396 kb]   (1603 Downloads)    
Type of Study: Research | Subject: Special

References
1. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 1995;44(8):863-70. [DOI:10.2337/diab.44.8.863]
2. Foo RS-Y, Mani K, Kitsis RN. Death begets failure in the heart. J Clin Invest 2005;115(3):565-71. [DOI:10.1172/JCI24569]
3. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003;125(2):437-43. [DOI:10.1016/S0016-5085(03)00907-7]
4. Miller TA, LeBrasseur NK, Cote GM, Trucillo MP, Pimentel DR, Ido Y, et al. Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem Biophys Res Commun 2005;336(1):309-15. [DOI:10.1016/j.bbrc.2005.08.088]
5. De Vries JE, Vork MM, Roemen T, de Jong YF, Cleutjens J, Van der Vusse G, et al. Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res1997;38(7):1384-94.
6. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003;5(9):781-92. [DOI:10.1038/ncb1035]
7. Finnie J. Effect of tunicamycin on hepatocytes in vitro. J Comp Pathol 2001;125(4):318-21. [DOI:10.1053/jcpa.2001.0510]
8. Zhang Y, Dong L, Yang X, Shi H, Zhang L. α-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes. Lipids Health Dis 2010;10:81-9. [DOI:10.1186/1476-511X-10-81]
9. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk/mice reveals a role for translational control in secretory cell survival. Mol Cell 2001;7(6):1153-63. [DOI:10.1016/S1097-2765(01)00264-7]
10. Kong JY, Rabkin SW. Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin A. Biochim Biophys Acta Mol Cell Biol Lipids 2000;1485(1):45-55. [DOI:10.1016/S1388-1981(00)00028-7]
11. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol-Heart C 2000;279(5):H2124-H32. [DOI:10.1152/ajpheart.2000.279.5.H2124]
12. Hickson-Bick DL, Buja ML, McMillin JB. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol 2000;32(3):511-9. [DOI:10.1006/jmcc.1999.1098]
13. Dyntar D, Eppenberger-Eberhardt M, Maedler K, Pruschy M, Eppenberger HM, Spinas GA, et al. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 2001;50(9):2105-13. [DOI:10.2337/diabetes.50.9.2105]
14. Yamasaki M, Chujo H, Nou S, Tachibana H, Yamada K. Alleviation of the cytotoxic activity induced by trans10, cis12-conjugated linoleic acid in rat hepatoma dRLh-84 cells by oleic or palmitoleic acid. Cancer Lett 2003;196(2):187-96. [DOI:10.1016/S0304-3835(03)00215-5]
15. Piper H. Cell culture techniques in heart and vessel research.1990.
16. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37(8):911-7. [DOI:10.1139/o59-099]
17. Neri BP, Frings CS. Improved method for determination of triglycerides in serum. Clin Chem 1973;19(10):1201-2.
18. Baldanzi G, Alchera E, Imarisio C, Gaggianesi M, Dal Ponte C, Nitti M, et al. Negative regulation of diacylglycerol kinase θ mediates adenosine-dependent hepatocyte preconditioning. Cell Death Differ 2010;17(6):1059-68. [DOI:10.1038/cdd.2009.210]
19. Wagner H, Lissau Ä, Hölzl J, Hörhammer L. The incorporation of P32 into the inositol phosphatides of rat brain. J Lipid Res 1962;3(2):177-80.
20. Lazaryan D, Sotnikova E. Determination of the content of lipid phosphorus and phospholipids in bee brood. Pharm Chem J 2004;38(9):517-9. [DOI:10.1007/s11094-005-0030-2]
21. Pienta K, Lehr J. Inhibition of prostate cancer cell growth by estamurine and etoposide: Evidence for interaction of the nuclear matrix. J Urol. 1993;49:1622-5. [DOI:10.1016/S0022-5347(17)36463-7]
22. Sandau K, Pfeilschifter J, Brüne B. Nitric oxide and superoxide induced p53 and Bax accumulation during mesangial cell apoptosis. Kidney Int 1997;52(2):378-86. [DOI:10.1038/ki.1997.344]
23. Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes 2003;52(3):726-33. [DOI:10.2337/diabetes.52.3.726]
24. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci 2003;100(6):3077-82. [DOI:10.1073/pnas.0630588100]
25. Montell E, Turini M, Marotta M, Roberts M, Noé V, Macé K, et al. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am J Physiol-Endoc M 2001;280(2):E229-E37. [DOI:10.1152/ajpendo.2001.280.2.E229]
26. Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 2009;24(5):830-40. [DOI:10.1111/j.1440-1746.2008.05733.x]
27. Nolan CJ, Larter CZ. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it? J Gastroenterol Hepatol 2009;24(5):703-6. [DOI:10.1111/j.1440-1746.2009.05823.x]
28. Gaster M, Rustan AC, Beck-Nielsen H. Differential Utilization of Saturated Palmitate and Unsaturated Oleate Evidence From Cultured Myotubes. Diabetes 2005;54(3):648-56. [DOI:10.2337/diabetes.54.3.648]
29. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 2003;419(2):101-9. [DOI:10.1016/j.abb.2003.08.020]
30. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W. Decreased Cardiolipin Synthesis Corresponds with Cytochromec Release in Palmitate-induced Cardiomyocyte Apoptosis. J Biol Chem 2001;276(41):38061-7.
31. Goldberg EM, Lester DS, Borchardt DB, Zidovetzki R. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers. Biophys J 1994;66(2):382-3. [DOI:10.1016/S0006-3495(94)80788-X]
32. Terutoshi M, Takai Y, Binzu Y, Takahashi J, Nishizuka Y, Fujikura T. Specificity of the fatty acyl moieties of diacylglycerol for the activation of calcium-activated, phospholipid-dependent protein kinase. J Biochem 1982;91(2):427-32. [DOI:10.1093/oxfordjournals.jbchem.a133714]
33. Coleman R, Bell R. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem 1976;251(15):4537-43.
34. Goldberg EM, Zidovetzki R. Effects of dipalmitoylglycerol and fatty acids on membrane structure and protein kinase C activity. Biophys J 1997;73(5):2603-14. [DOI:10.1016/S0006-3495(97)78290-0]
35. Berge RK, Madsen L, Vaagenes H, Tronstad KJ, Göttlicher M, Rustan AC. In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation. Biochem J 1999;343(1):191-7. [DOI:10.1042/bj3430191]
36. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995;146(1):3-15.
37. Declan A, Healy R, Watson WG, Newsholme P. Polyunsaturated and monounsaturated fatty acids increase neutral lipid accumulation, caspase activation and apoptosis in a neutrophil-like, differentiated HL-60 cell line. Clin Sci 2003;104(2):171-9. [DOI:10.1042/cs1040171]
38. Schaffer SW, Croft CB, Solodushko V. Cardioprotective effect of chronic hyperglycemia: effect on hypoxia-induced apoptosis and necrosis. Am J Physiol-Heart C 2000;278(6):H1948-H54. [DOI:10.1152/ajpheart.2000.278.6.H1948]
39. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336(16):1131-41. [DOI:10.1056/NEJM199704173361603]
40. Beeharry N, Chambers J, Green I. Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis 2004;9(5):599-607. [DOI:10.1023/B:APPT.0000038039.82506.0c]
41. Merrill AH, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. BBA-Lipid Lipid Met 1990;1044(1):1-12. [DOI:10.1016/0005-2760(90)90211-F]
42. Obeid LM, Hannun YA. Ceramide: a stress signal and mediator of growth suppression and apoptosis. J Cell Biochem 1995;58(2):191-8. [DOI:10.1002/jcb.240580208]
43. Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 1997;272(6):3324-9. [DOI:10.1074/jbc.272.6.3324]
44. Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. BBA-Lipid Lipid Met 2002;1585(2):114-25. [DOI:10.1016/S1388-1981(02)00331-1]
45. Hendrickson SC, Louis JDS, Lowe JE, Abdel-aleem S. Free fatty acid metabolism during myocardial ischemia and reperfusion. Mol Cell Biochem 1997;166(1-2):85-94. [DOI:10.1023/A:1006886601825]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.