Write your message
Volume 12, Issue 1 (January-Fabruary 2018)                   IJT 2018, 12(1): 1-5 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azadbakht F, Shirali S, Ronagh M T, Zamani I. Assessment of Skin Pathological Responses in the Yellowfin Seabream (Acanthopagrus latus) under the Aeromonas hydrophila Exposure. IJT 2018; 12 (1) :1-5
URL: http://ijt.arakmu.ac.ir/article-1-631-en.html
1- Department of Marine Biology, Faculty of Marine Science, Khorramshar University of Marine Science and Technology, Khorramshar, Khouzestan, Iran. , f.azadbakht6776@gmail.com
2- Department of Marine Biology, Faculty of Marine Science, Khorramshar University of Marine Science and Technology, Khorramshar, Khouzestan, Iran.
Abstract:   (3735 Views)
Background: Bacterial diseases in cultured fish are considered the main problem to aquaculture system. Skin is the structure that covers the body in fish. Skin histopatological alterations were used to assess the effects of Aeromonas hydrophila exposure on the yellowfin seabream )Acanthopagrus latus(.
Methods: In this regard, 90 A. latus were exposed to sublethal concentrations of A. hydrophila (103,106 CFU/ml) for 3 weeks.
Results: Some more severe alternations found in the skin of fish exposed. The most frequent histopathological changes detected in the skin including hyperplasia of epidermis, hypertrophy and hyperplasia of the mucosal cells and dermis edema. Some more severe alternations found in the skin of fish exposed to higher level of A. hydrophila (106 CFU/ml) included telangiectasia of dermis layer. In addition, according to the results of histometrical studies in treated fish compared to control group showed that thickness of epidermis and dermis layers were increased significantly (P<0.05).
Conclusion: A. hydrophila can cause major histophatological changes in the skin of A. latus. In addition, histopathological changes of the skin provide helpful information about the environmental conditions and as particular biomarkers may provide imminent into evaluating the general health and stress status of fish.
Full-Text [PDF 489 kb]   (1171 Downloads)    
Type of Study: Research | Subject: Special

References
1. Abdelhamed H, Ibrahim I, Nho SW, Banes MM, Wills RW, Karsi A, et al. Evaluation of three recombinant outer membrane proteins, OmpA1, Tdr, and TbpA, as potential vaccine antigens against virulent Aeromonas hydrophila infection in channel catfish (Ictalurus punctatus). Fish & shellfish immunol 2017;66:480-6. [DOI:10.1016/j.fsi.2017.05.043]
2. Arunkumar RI, Rajasekaran P, Michael RD. Differential effect of chromium compounds on the immune response of the African mouth breeder Oreochromis mossambicus (Peters). Fish & shellfish immunol 2000;10(8):667-76. [DOI:10.1006/fsim.2000.0281]
3. Austin B. The bacterial microflora of fish, revised. Sci World J 2006;6:931-45. [DOI:10.1100/tsw.2006.181]
4. Bancroft JD, Floyd AD, Suvarna SK. Bancroft's Theory and Practice of Histological Techniques. 2006;7: 69-156.
5. Brown S. Contamination effected on the teleoset fish gill. Environ Toxicol Chem 2009, 23: 1680-701.[In Persian] [DOI:10.1897/03-242]
6. Brown S, Adams B, Cyr D, Eales J. Contaminant effects on the teleost fish skin. Environ Toxicol Chem 2004, 23: 1680- 701. [In Persian] [DOI:10.1897/03-242]
7. Carletta M, Weis P, Weis J. Development of thyroid abnormalities in mummichogs, Fundulus heteroclitus, from a polluted site. Mar Environ Res 2002;54(3):601-4. [DOI:10.1016/S0141-1136(02)00133-2]
8. Hesp SA, Potter IC, Hall NG. Reproductive biology and protandrous hermaphroditism in Acanthopagrus latus. Environ Biol Fishes 2004;70(3):257-72. [DOI:10.1023/B:EBFI.0000033344.21383.00]
9. Harikrishnan R, Balasundaram C. Modern trends in Aeromonas hydrophila disease management with fish. Rev Fish Sci 2005;13(4):281-320. [DOI:10.1080/10641260500320845]
10. Harikrishnan R, Rani MN, Balasundaram C. Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture 2003;221(1):41-50. [DOI:10.1016/S0044-8486(03)00023-1]
11. Jiraungkoorskul W, Upatham ES, Kruatrachue M, Sahaphong S, Vichasri-Grams S, Pokethitiyook P. Histopathological effects of Roundup, a glyphosate herbicide, on Nile tilapia (Oreochromis niloticus). Science Asia 2002;28:121-7. [DOI:10.2306/scienceasia1513-1874.2002.28.121]
12. Schlenk D, Benson H. Target organ toxicity in marine and freshwater teleosts. J World Aquac Soc 2001; 67: 89-97.
13. Kumar R, Pande V, Singh L, Sharma L, Saxena N. Pathological findings of experimental Aeromonas hydrophila infection in golden mahseer (Tor putitora). Fish Aquacul J 2016;7:160.
14. Khalil A, Mansour E. Toxicity of crude extracellular products of Aeromonas hydrophila in tilapia, Tilapianilotica. Lett Appl Microbiol 1997;25(4):269-73. [DOI:10.1046/j.1472-765X.1997.00220.x]
15. Rauta PR, Nayak B, Monteiro GA, Mateus M. Design and characterization of plasmids encoding antigenic peptides of Aha1 from Aeromonas hydrophila as prospective fish vaccines. J Biotechnol 2017;241:116-26. [DOI:10.1016/j.jbiotec.2016.11.019]
16. Rodriguez I, Novoa B, Figueras A. Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish & shellfish immunol 2008;25(3):239-49. [DOI:10.1016/j.fsi.2008.05.002]
17. Sahoo P, Pillai BR, Mohanty J, Kumari J, Mohanty S, Mishra B. In vivo humoral and cellular reactions, and fate of injected bacteria Aeromonas hydrophila in freshwater prawn Macrobrachium rosenbergii. Fish & shellfish immunol 2007;23(2):327-40. [DOI:10.1016/j.fsi.2006.11.006]
18. Sahoo P, Mahapatra KD, Saha J, Barat A, Sahoo M, Mohanty B, et al. Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp, Labeo rohita. Fish & shellfish immunol 2008;25(1):163-9. [DOI:10.1016/j.fsi.2008.04.003]
19. Schlenk D, Benson FW. Target organ toxicity in marine and freshwater teleosts. Vet J 2012; 67(2): 341-89.
20. Uarown AS. Contamination effected on the teleoset skin fish. Environ Toxicol Chem 2009,23(5):1680-701.
21. Brown SB, Adams BA, Cyr DG, Eales JG. Contaminant effects on the teleost fish thyroid. Environ Toxicol Chem 2004;23(7):1680-701. [DOI:10.1897/03-242]
22. Uma A, Rebecca G, Meena S, Saravanabava K. PCR detection of putative aerolysin and hemolysin genes in an Aeromonas hydrophila isolate from infected Koi carp (Cyprinus carpio). Tamil J Vet Anim Sci 2010;6:31-3.
23. Winkaler E, Silva AdG, Galindo H, Martine CR. Histological and physiological biomarkers to assess fish health in Londrina streams, Parana State. Acta Sci Maringa 2001;23(2):507-14.
24. Yardimci B, Aydin Y. Pathological findings of experimental Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Ankara Univ Vet Fak Derg 2011;58:47-54. [DOI:10.1501/Vetfak_0000002448]
25. Yun S, Jun JW, Giri SS, Kim HJ, Chi C, Kim SG, et al. Efficacy of PLGA microparticle-encapsulated formalin-killed Aeromonas hydrophila cells as a single-shot vaccine against A. hydrophila infection.Vaccine 2017;35(32): 3959-65. [DOI:10.1016/j.vaccine.2017.06.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb