Volume 12, Issue 2 (March-April 2018)                   IJT 2018, 12(2): 45-54 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Torbati S, Mahmoudian M, Alimirzaei N. Toxicological Effects of a Post Emergent Herbicide on Spirodela polyrhiza as a Model Macrophyte: A Comparison of the Effects of Pure and Nano-capsulated Form of the Herbicide. IJT. 2018; 12 (2) :45-54
URL: http://ijt.arakmu.ac.ir/article-1-655-en.html
Ph.D of Plant Physiology, Urmia Lake Research Institute, Urmia University, Urmia, Iran. , s.torbati@urmia.ac.ir
Abstract:   (2204 Views)
Background: One of the main reasons of environmental contaminations is the broad application of herbicides. Controlled release technologies such as encapsulation of herbicides are as an effective tool to reduce environmental contaminations. The aim of the present study was successful nanocapsulation of Gallant Super (GS), its characterization and compare the physiological responses of Spirodela polyrhiza L. upon exposure to GS and its encapsulated form.
Methods: Nanocapsulation of GS in the poly (methyl methacrylate) (PMMA) was performed in the Department of Nanotechnology, Faculty of Sciences and biological effects of the contaminants on S. polyrhiza was investigated in Biotechnology Research Center, both in Urmia University, Urmia, Iran in 2016. The surface morphology of PMMA/GS nanocapsules was studied by SEM and TEM and their chemical characterization was determined by FT-IR spectroscopy. For assessment of the effects of the encapsulated Gallant Super (ECGS) and GS on S. polyrhiza, some plant physiological parameters were investigated.
Results: Direct treatment of GS had more and notable negative effects on the plant growth when compared with ECGS treatments. Moreover, different examined concentrations of the two contaminant groups led to the remarkable induction of the activities of the antioxidant enzymes such as SOD. Even though the enhancement of the antioxidant enzymes activities when the plant was treated with GS was notably more than the effects of ECGS.
Conclusion: ECGS caused to the fewer changes in the plant physiological parameters and negative effects of the treatment of ECGs were less than when the plant had direct contact with GS.
Full-Text [PDF 1973 kb]   (484 Downloads)    
Type of Study: Research | Subject: General

1. Klöppel H, Kördel W, Stein B. Herbicide transport by surface runoff and herbicide retention in a filter strip-rainfall and runoff simulation studies. Chemosphere 1997;35(1-2):129-41. [DOI:10.1016/S0045-6535(97)00145-8]
2. Frankart C, Eullaffroy P, Vernet G. Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environ Exp Bot 2003;49(2):159-68. [DOI:10.1016/S0098-8472(02)00067-9]
3. Dailey OD, Dowler CC, Mullinix BG. Polymeric microcapsules of the herbicides atrazine and metribuzin: preparation and evaluation of controlled-release properties. J Agric Food Chem 1993;41(9):1517-22. [DOI:10.1021/jf00033a031]
4. Roy A, Singh SK, Bajpai J, Bajpai AK. Controlled pesticide release from biodegradable polymers. Cent Eur J Chem 2014;12(4):453-69. [DOI:10.2478/s11532-013-0405-2]
5. Wang X, Zhao J. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials. J Agric Food Chem 2013;61(16):3789-96. [DOI:10.1021/jf4004658]
6. Pérez‐Martínez JI, Morillo E, Maqueda C, Gines JM. Ethyl cellulose polymer microspheres for controlled release of norfluazon. Pest Manage Sci 2001;57(8):688-94. [DOI:10.1002/ps.339]
7. Trojer MA, Nordstierna L, Bergek J, Blanck H, Holmberg K, Nydén M. Use of microcapsules as controlled release devices for coatings. Adv Colloid Interface Sci 2015;222:18-43. [DOI:10.1016/j.cis.2014.06.003]
8. Jämsä S, Mahlberg R, Holopainen U, Ropponen J, Savolainen A, Ritschkoff A-C. Slow release of a biocidal agent from polymeric microcapsules for preventing biodeterioration. Prog Org Coat 2013;76(1):269-76. [DOI:10.1016/j.porgcoat.2012.09.018]
9. Mallory-Smith CA, Retzinger EJ. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol 2003;17(3):605-19. [DOI:10.1614/0890-037X(2003)017[0605:RCOHBS]2.0.CO;2]
10. Banaś W, Furmanek T, Banaś A. Effect of haloxyfop and cerulenin on de novo biosynthesis of lipids in roots of wheat and maize. Acta Biochim Pol 2012;59(4): 553-67.
11. Doganlar ZB. Quizalofop-p-ethyl-induced phytotoxicity and genotoxicity in Lemna minor and Lemna gibba. J Environ Sci Health, Part A 2012;47(11):1631-43. [DOI:10.1080/10934529.2012.687175]
12. Kielak E, Sempruch C, Mioduszewska H, Klocek J, Leszczyński B. Phytotoxicity of Roundup Ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pestic Biochem Physiol 2011;99(3):237-43. [DOI:10.1016/j.pestbp.2011.01.002]
13. Dosnon-Olette R, Couderchet M, Oturan MA, Oturan N, Eullaffroy P. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. Int J Phytorem 2011;13(6):601-12. [DOI:10.1080/15226514.2010.525549]
14. Teodorović I, Knežević V, Tunić T, Čučak M, Lečić JN, Leovac A, et al. Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine. Environ Toxicol Chem 2012;31(2):417-26. [DOI:10.1002/etc.748]
15. Bisewska J, Sarnowska EI, Tukaj ZH. Phytotoxicity and antioxidative enzymes of green microalga (Desmodesmus subspicatus) and duckweed (Lemna minor) exposed to herbicides MCPA, chloridazon and their mixtures. J Environ Sci Health, Part B 2012;47(8):814-22. [DOI:10.1080/03601234.2012.676443]
16. Mkandawire M, Dudel EG. Are Lemna spp. effective phytoremediation agents. Bioremediation, Biodiversity and Bioavailability 2007;1(1):56-71.
17. Aliferis KA, Materzok S, Paziotou GN, Chrysayi-Tokousbalides M. Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere 2009;76(7):967-73. [DOI:10.1016/j.chemosphere.2009.04.025]
18. Drost W, Matzke M, Backhaus T. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 2007;67(1):36-43. [DOI:10.1016/j.chemosphere.2006.10.018]
19. Torbati S. Artificial neural network modeling of biotreatment of malachite green by Spirodela polyrhiza: Study of plant physiological responses and the dye biodegradation pathway. Process Saf Environ Prot 2016;99:11-9. [DOI:10.1016/j.psep.2015.10.004]
20. Geoffroy L, Frankart C, Eullaffroy P. Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin. Environ pollut 2004;131(2):233-41. [DOI:10.1016/j.envpol.2004.02.021]
21. Khataee A, Movafeghi A, Torbati S, Lisar SS, Zarei M. Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: Artificial neural network modeling. Ecotoxicol Environ Saf 2012;80:291-8. [DOI:10.1016/j.ecoenv.2012.03.021]
22. Dosnon-Olette R, Couderchet M, El Arfaoui A, Sayen S, Eullaffroy P. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. Sci Total Environ 2010;408(10):2254-9. [DOI:10.1016/j.scitotenv.2010.01.057]
23. Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 2006;62(2):275-84. [DOI:10.1016/j.chemosphere.2005.05.026]
24. Lichtenthaler HK. Methods in Enzymolology. Academic Press, London; 1987. p. 350-382.
25. Winterbourn CC, McGrath BM, Carrell RW. Reactions involving superoxide and normal and unstable haemoglobins. Biochem J 1976;155(3):493-502. [DOI:10.1042/bj1550493]
26. Chance B, Maehly AC. Methods in Enzymology. Academic Press, New York; 1955. p. 764-75.
27. Obinger C, Maj M, Nicholls P, Loewen P. Activity, Peroxide Compound Formation, and Heme d Synthesis in Escherichia coli HPII Catalase. Arch Biochem Biophys 1997;342(1):58-67. [DOI:10.1006/abbi.1997.9988]
28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72(1-2):248-54. [DOI:10.1016/0003-2697(76)90527-3]
29. Mustafa Y, Suna Arikan E. Genotoxicity testing of quizalofop-P-ethyl herbicide using the Allium cepa anaphase-telophase chromosome aberration assay. Caryologia 2008;61(1):45-52. [DOI:10.1080/00087114.2008.10589608]
30. Faheed FA. Comparative effects of four herbicides on physiological aspects in Triticum sativum L. Afr J Ecol 2012;50(1):29-42. [DOI:10.1111/j.1365-2028.2011.01293.x]
31. Jiang L, Wang H, Wang M, Teng X. Synthesis and Biological activity of 4-(4, 6-Disubstituted-pyrimidin-2-yloxy) phenoxy Acetates. Molecules 2010;15(2):1074-81. [DOI:10.3390/molecules15021074]
32. Gherekhloo J, RASHED MOHASSEL MH, Mahalati MN, Zand E, Ghanbari A, Osuna MD, et al. Confirmed resistance to aryloxyphenoxypropionate herbicides in Phalaris minor populations in Iran. Weed Biol Manage 2011;11(1):29-37. [DOI:10.1111/j.1445-6664.2011.00402.x]
33. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 2006;141(2):312-22. [DOI:10.1104/pp.106.077073]
34. Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 2012;35(2):259-70. [DOI:10.1111/j.1365-3040.2011.02336.x]
35. Teisseire H, Guy V. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant sci 2000;153(1):65-72. [DOI:10.1016/S0168-9452(99)00257-5]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb