Write your message
Volume 18, Issue 2 (May 2024)                   IJT 2024, 18(2): 61-70 | Back to browse issues page

Ethics code: 01/21


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fernandes de Lima Neto M, Igo Teixeira de Assis E, Venância Nunes Azevedo A, Raiane Feitosa Melo Paulino L, Aragão Matos Donato M, Alves Peixoto C, et al . Extract of Actaea racemosa Protects Mice Ovarian Follicles Against Doxorubicin-induced Toxicity. IJT 2024; 18 (2) :61-70
URL: http://ijt.arakmu.ac.ir/article-1-1333-en.html
1- Laboratory of Biotechnology and Physiology of Reproduction–LABIREP, Federal University of Ceara, Sobral, CE, Brazil
2- Laboratory of Ultrastructure, CNPqAM/FIOCRUZ, Federal University of Pernambuco Recife, PE, Brazil
3- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
4- Nucleus of Research in Animal Experimentation–NUPEX, Federal University of Ceara, Sobral, CE, Brazil
5- Laboratory of Biotechnology and Physiology of Reproduction–LABIREP, Federal University of Ceara, Sobral, CE, Brazil , jrvsilva@ufc.br
Abstract:   (284 Views)
Background: Given the cytotoxicity of chemotherapy drugs used in cancer treatment, there is a need to develop alternative agents to protect female fertility. This study investigated the effect of Actaea racemosa (A. racemosa) extract on mice ovarian cells and the damage caused by doxorubicin (DOX) to the mice ovaries.
Methods: We evaluated the effects of A. racemosa extract on mice ovaries (n=42) after DOX treatment. The mice were pre-treated with saline solution (controls) or with 0.5 or 5 mg/kg A. Racemosa extract. Afterward, during a period of 10 days, they were treated daily with one of the six protocols: (i) saline solution (control), (ii) 10 mg/kg DOX, (iii) 0.5 mg/kg A. racemosa extract, (iv) both DOX and 5 mg/kg A. racemosa extract, (v) A. racemosa extract (5 mg/kg), and (vi) both DOX and 0.5 mg/kg A. racemosa extract. At the end of these treatments, the ovaries were fixed for histopathological examinations. Ovarian follicular morphology, stromal cell density, collagen fibers, and TNF-α expression were evaluated. Some ovaries were fixed for transmission electron microscopy or stored at -80oC to study the mRNA expression for Caspase-3 and TNF-α.
Results: The Mice treated with A. racemosa extract had reduced follicular degeneration and cell death after exposure to DOX. Ovaries of mice treated with 0.5 mg/kg A. racemosa extract had granulosa cells and oocytes with preserved ultrastructure, decreased immunostaining for TNF-α, and reduced Caspase-3 mRNA.
Conclusion: The A. racemosa extract supported follicular survival and protected the ovarian follicles and stromal cells against DOX-induced cytotoxicity.
Full-Text [PDF 1375 kb]   (104 Downloads) |   |   Full-Text (HTML)  (25 Views)  
Type of Study: Research | Subject: General

References
1. Yeo W, Pang E, Liem GS, Suen JJS, Ng RYW, Yip CCH, et al. Menopausal symptoms in relationship to breast cancer-specific quality of life after adjuvant cytotoxic treatment in young breast cancer survivors. Health Qual Life Outcomes. 2020;18(1):1-9. [doi:10.1186/s12955-020-1283-x]
2. Bellver J, Donnez J. Introduction: Infertility etiology and offspring health. FertilSteril. 2019; 111(6):1033-35. [doi:10.1016/j.fertnstert.2019.04.043]
3. Mobaraki M, Faraji A, Dolati P, Ataei M, Manshadi HRD. Molecular Mechanisms of Cardiotoxicity: A Review on the Major Side-effect of Doxorubicin. Indian J Pharm Sci. 2017; 79(3):335-44. [doi:10.4172/pharmaceutical-sciences.1000235]
4. Wang Y, Liu M, Johnson SB, Yuan G, Arriba AK, Zubizarreta ME, et al. Doxorubicin obliterates mouse ovarian reserve through both primordial follicle atresia and overactivation. Toxicol Appl Pharmacol. 2019;15(381):1-11. [doi:10.1016/j.taap.2019.114714] [pmid: 31437492]
5. Niringiyumukiza JD, Cai H, Chen L, Li Y, Wang L, Zhang M, et al. Protective properties of glycogen synthase kinase-3 inhibition against doxorubicin-induced oxidative damage to mouse ovarian reserve. Biomed Pharmacother. 2019; 116:108963. [doi:10.1016/j.biopha.2019.108963]
6. Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY). 2011;3(8):782-93. [doi:10.18632/aging.100363] [pmid: 21869459]
7. Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, et al. Plants in Anticancer Drug Discovery: From Molecular Mechanism to Chemoprevention. Biomed Res Int. 2022; 2022:1-18. [DOI:10.1155/2022/5425485]
8. Rad P, Safari F, Mohammadi J, Delaviz H. Preserved Ovarian Function After Toxicity WithDoxorrubicin in Rats: Protective Effect of Nasturtium Officinale Extract. Iran JToxicol. 2021;15(1):57-64. [doi:10.32598/IJT.15.1.747.1]
9. Campos LB, Gilglioni EH, Garcia RF, Brito Mdo N, Natali MR, Ishii-Iwamoto EL, et al. Cimicifuga racemosa impairs fatty acid β-oxidation and induces oxidative stress in livers of ovariectomized rats with renovascular hypertension. Free Radic Biol Med. 2012;53(4):680-89. [doi:10.1016/j.freeradbiomed.2012.05.043]
10. Morelli V, Naquin C. Alternative therapies for traditional disease states: menopause. Am Fam Physician. 2002;66(1):129-34. [Link]
11. Kim CD, Lee WK, Lee MH, Cho HS, Lee YK, Roh SS. Inhibition of mast cell-dependent allergy reaction by extract of black cohosh (Cimicifuga racemosa). ImmunopharmacolImmunotoxicol. 2004; 26(2):299-308. [doi:10.1081/IPH-120037728]
12. Guo Y, Yin T, Wang X, Zhang F, Pan G, Lv H, et al. Traditional uses, phytochemistry, pharmacology and toxicology of the genus Cimicifuga: A review. J Ethnopharmacol. 2017; 209:264-82. [doi:10.1016/j.jep.2017.07.040]
13. Ruhlen RL, Sun GY, Sauter ER. Black Cohosh: Insights into its Mechanism(s) of Action. Integr Med Insights. 2008. [doi:10.4137/117863370800300002]
14. Liske E, Hänggi W, Henneicke-von Zepelin HH, Boblitz N, Wüstenberg P, Rahlfs VW. Physiological investigation of a unique extract of black cohosh (Cimicifugaera cemosae rhizoma): A 6-month clinical study demonstrates no systemic estrogenic effect. J Womens Health Gend Based Med. 2002; 11(2):163-74. [doi:10.1089/152460902753645308]
15. Fernandes ES, Celani MFS, Fistarol M, Geber S. Effectiveness of the short-term use of Cimicifuga racemosa in the endothelial function of postmenopausal women: A double-blind, randomized, controlled trial. Climacteric.2020;23(3):245-51. [doi:10.1080/13697137.2019.1682542]
16. Rabenau M, Unger M, Drewe J, Culmsee C. Metabolic switch induced by Cimicifuga racemosa extract prevents mitochondrial damage and oxidative cell death. Phytomedicine. 2019;52:107-6. [doi: 10.1016/j.phymed.2018.09.177] [doi:10.1016/j.phymed.2018.09.177]
17. de Assis EIT, Azevedo VAN, De Lima Neto MF, Costa FC, Paulino LRFM, Barroso PAA, et al. Protective Effect of Cimicifuga racemosa (L.) Nutt Extract on Oocyte and Follicle Toxicity Induced by Doxorubicin during In vitro Culture of Mice Ovaries. Animals (Basel). 2022;13(1):1-18. [doi:10.3390/ani13010018]
18. Azouz AA, Ali SE, Abd-Elsalam RM, Emam SR, Galal MK, Elmosalamy SH, et al. Modulation of steroidogenesis by Actaea racemosa and vitamin C combination, in letrozole induced polycystic ovarian syndrome rat model: promising activity without the risk of hepatic adverse effect. Chin Med. 2021;16(1):1-17. [doi:10.1186/s13020-021-00444-z]
19. Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol. 2002;62(4A):609-614. [doi:10.1590/S1519-69842002000400008]
20. Gouveia BB, Barberino RS, Dos Santos Silva RL, Lins TLBG, da Silva Guimarães V, do Monte APO, et al. Involvement of PTEN and FOXO3a Proteins in the Protective Activity of Protocatechuic Acid Against Cisplatin-Induced Ovarian Toxicity in Mice. Reprod Sci. 2021;28(3):865-76. [doi:10.1007/s43032-020-00305-4]
21. Rittié L. Method for Picrosirius Red-Polarization Detection of Collagen Fibers in Tissue Sections. Methods Mol Biol. 2017;1627:395-407. [doi:10.1007/978-1-4939-7113-8_26]
22. Barberino RS, Menezes VG, Ribeiro AEAS, Palheta RCJr, Jiang X, Smitz JEJ, et al. Melatonin protects against cisplatin-induced ovarian damage in mice via the MT1 receptor and antioxidant activity. Biol Reprod. 2017;96:1244-55. [doi:10.1093/biolre/iox053]
23. Kayedpoor P, Mohamadi S, Karimzadeh-Bardei L, Nabiuni M. Anti-inflammatory effect of silymarin on ovarian immunohistochemical localization of TNF-α associated with systemic inflammation in polycystic ovarian syndrome.Int J Morphol. 2017;35:723-32. [doi:10.4067/S0717-95022017000200054]
24. Suh KS, Choi EM, Jung WW, Kim YJ, Hong SM, Park SY, et al. Deoxyactein protects pancreatic β-cells against methylglyoxal-induced oxidative cell damage by the upregulation of mitochondrial biogenesis. Int J Mol Med;40(2):539-48. [doi:10.3892/ijmm.2017.3018]
25. Choi EM. Deoxyactein Isolated from Cimicifuga racemosa protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity. J Appl Toxicol. 2013;33(6):488-94. [doi:10.1002/jat.1784]
26. Schmid D, Woehs F, Svoboda M, Thalhammer T, Chiba P, Moeslinger T. Aqueous extracts of Cimicifuga racemosa and phenolcarboxylic constituents inhibit production of proinflammatory cytokines in LPS-stimulated human whole blood. Can J PhysiolPharmacol. 2009;87(11):963-72. [doi:10.1139/Y09-091]
27. Roti Roti EC, Leisman SK, Abbott DH, Salih SM. Acute doxorubicin insult in the mouse ovary is cell- and follicle-type dependent. PLoS ONE. 2012;7:42293. [doi:10.1371/journal.pone.0042293]
28. Ben-Aharon I, Meizner I, Granot T, Uri S, Hasky N, Rizel S, et al. Chemotherapy-induced ovarian failure as a prototype for acute vascular toxicity. Oncologist. 2012;17(11):1386-93. [doi:10.1634/theoncologist.2012-0172] [pmid:22956534]
29. Lliberos C, Liew SH, Zareie P, La Gruta NL, Mansell A, Hutt K. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep.2021;11(1):1-15. [doi:10.1038/s41598-020-79488-4] [pmid:33432051]
30. Briley SM, Jasti S, McCracken JM, Hornick JE, Fegley B, Pritchard MT, et al. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction. 2016;152(3):245-60. [doi:10.1530/REP-16-0129] [pmid: 27491879]
31. Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Cancer Res. 2007;67(21):10159-62. [doi:10.1158/0008-5472.CAN-07-2042]
32. Silva JRV, Lima FEO, Souza ALP, Silva AWB. Interleukin-1β and TNF-α systems in ovarian follicles and their roles during follicular development, oocyte maturation and ovulation. Zygote. 2020; 28(4):270-77. [doi:10.1017/S0967199420000222]
33. Marcinkiewicz JL, Krishna A, Cheung CM, Terranova PF. Oocytic tumor necrosis factor alpha: localization in the neonatal rat ovary and throughout follicular development in the adult rat. Biol Reprod. 1994;1251-60. [doi:10.1095/biolreprod50.6.1251]
34. Roby KF, Terranova PF. Localization of tumor necrosis factor (TNF) in the rat and bovine ovary using immune-cytochemistry and cell blot: evidence for granulosal production. In: Hirshfield, A.N. (eds) Growth Factors and the Ovary. Springer, Boston, MA. 1989:273-78. [doi:10.1007/978-1-4684-5688-2_31]
35. Sancho-Tello M, Tash J, Roby K, Terranova PF. Effects of lipopolysaccharide on ovarian function in the pregnant mare serum gonadotropin-treated immature rat. Endocrine Journal. 1993;503-11. [doi:10.2527/jas1987.6561768x]
36. Strauss JF, Fitz Gerald GA. Steroid Hormones and Other Lipid Molecules Involved in Human Reproduction. Yen and Jaffe's Reproductive Endocrinology. 2019;75-114. [doi:10.1016/b978-0-323-47912-7.00004-4]
37. Nagata S. Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol. 2018; 36:489-517. [doi:10.1146/annurev-immunol-042617-053010]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb