Write your message
Volume 10, Issue 6 (November-December 2016)                   IJT 2016, 10(6): 15-21 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghashghaee M, Farzaneh V. Removal of Cr(VI) Species from Aqueous Solution by Different Nanoporous Materials. IJT. 2016; 10 (6) :15-21
URL: http://ijt.arakmu.ac.ir/article-1-507-en.html
1- Department of Process Design and Construction, Iran Polymer and Petrochemical Institute, Tehran, Iran. , m.ghashghaee@ippi.ac.ir
2- Department of Applied Chemistry, Semnan University, Semnan, Iran.
Abstract:   (4413 Views)

Background: The removal of toxic metals from sewage and wastewaters is one of the most important concerns in the twenty first century. The removal of poisonous Cr(VI) from aqueous solution by different low-cost available nanoporous adsorbents was investigated in the present study. 

Methods: Fumed silica, bentonite (BN), hydrotalcite (HT), MCM-41, Na-Y, mordenite (MOR) and SAPO-34 were used at different adsorbent-to-metal ion ratios. Two predominant species of Cr were considered including chromate and hydrogen chromate ions.

Results: Both HT and Na-Y adsorbed the toxic bichromate ions more favorably than other sorbents. Overall, the efficiency of the Cr removal followed the sequence of HT > SAPO-34 > MOR > MCM-41 > Na-Y > silica > BN. Because of its surface chemistry, HT with an uptake of 65.2 mg/g showed the highest toxic abatement among the seven adsorbents investigated under the acidic conditions, followed by the microporous materials SAPO-34 and MOR with uptakes of 41.2 and 41.0 mg/g, respectively.

Conclusion: Both HT and Na-Y adsorbed the toxic bichromate ions more favorably than other sorbents. The high pore volume and the apparent surface area of a non-functionalized MCM-41 were not effective in the adsorption of Cr compounds. Overall, HT was the best choice owing to its appropriate surface chemistry with respect to the Cr oxygenates.

Full-Text [PDF 775 kb]   (2248 Downloads)    
Type of Study: Research | Subject: General

1. Mishra S. Adsorption–desorption of heavy metal ions. Curr Sci. 2014;107(4):601-12.
2. Jagung PT. Removal of Zn(II), Cd(II) and Mn(II) from aqueous solutions by adsorption on maize stalks. Malays J Anal Sci 2011;15(1):8-21.
3. Gaikwad R, Gupta D. Review on removal of heavy metals from acid mine drainage. Appl Ecol Env Res. 2008;6(3):81-98. [DOI:10.15666/aeer/0603_081098]
4. Jiang K, Sun T-h, Sun L-n, Li H-b. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. J Environ Sci 2006;18(6):1221-5. [DOI:10.1016/S1001-0742(06)60066-1]
5. Lukman S, Essa M, Mu'azu ND, Bukhari A, Basheer C. Adsorption and desorption of heavy metals onto natural clay material: influence of initial pH. J Environ Sci Technol 2013;6(1):1-15. [DOI:10.3923/jest.2013.1.15]
6. Minceva M, Markovska L, Meshko V. Removal of Zn 2+, Cd 2+ and Pb 2+ from binary aqueous solution by natural zeolite and granulated activated carbon. Maced J Chem Chem Eng 2007;26(2):125-34.
7. Perić J, Trgo M, Medvidović NV. Removal of zinc, copper and lead by natural zeolite a comparison of adsorption isotherms. Water Res 2004;38(7):1893-9. [DOI:10.1016/j.watres.2003.12.035]
8. Northcott K, Kokusen H, Komatsu Y, Stevens G. Synthesis and surface modification of mesoporous silicate SBA‐15 for the adsorption of metal ions. Separ Sci Technol 2006;41(9):1829-40. [DOI:10.1080/01496390600725760]
9. Pandey A, Bera D, Shukla A, Ray L. Studies on Cr(VI), Pb(II) and Cu(II) adsorption–desorption using calcium alginate as biopolymer. Chem Speciation Bioavailability 2007;19(1):17-24. [DOI:10.3184/095422907X198031]
10. Tashauoei HR, Movahedian Attar H, Kamali M, Amin MM, Nikaeen M. Removal of Hexavalent Chromium (VI) from Aqueous Solutions using Surface Modified Nanozeolite A. Int J Environ Res 2010;4(3):491-500.
11. Salunkhe B, Raut SJ. Removal of Heavy Metal Ni (II) and Cr (VI) from Aqueous Solution by Scolecite Natural Zeolite. Int J Chem Sci 2012;10(2):1133-48.
12. Tytłak A, Oleszczuk P, Dobrowolski R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions. Environ Sci Pollut Res 2015;22(8):5985-94. [DOI:10.1007/s11356-014-3752-4]
13. Šikovec M, Franko M, Cruz FG, Katz SA. Thermal lens spectrometric determination of hexavalent chromium. Anal Chim Acta 1996;330(2):245-50. [DOI:10.1016/0003-2670(96)00175-4]
14. Romero-González J, Gardea-Torresdey JL, Peralta-Videa JR, Rodríguez E. Determination of equilibrium and kinetic parameters of the adsorption of Cr(III) and Cr(VI) from aqueous solutions to Agave Lechuguilla biomass. Bioinorg Chem Appl 2005;3(1-2):55-68. [DOI:10.1155/BCA.2005.55]
15. Pandey P, Sharma S, Sambi S. Kinetics and equilibrium study of chromium adsorption on zeoliteNaX. Int J Environ Sci Tech 2010;7(2):395-404. [DOI:10.1007/BF03326149]
16. Dula T, Siraj K, Kitte SA. Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo (Oxytenanthera abyssinica). ISRN Environ Chem 2014; 2014.
17. Šillerová H. Study of Cr(III) and Cr(VI) sorption by low-cost biosorbents. Czech University of Life Sciences, Prague.2014.
18. Shouman MA, Fathy NA, Khedr SA, Attia AA. Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches. Advances in Physical Chemistry. 2013;2013: 159712-3. [DOI:10.1155/2013/159712]
19. Satapathy D, Natarajan G, Patil S. Adsorption characteristics of chromium(VI) on granular activated carbon. J Chin Chem Soc-Taip 2005;52(1):35-44. [DOI:10.1002/jccs.200500006]
20. Dakiky M, Khamis M, Manassra A, Mer'eb M. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 2002;6(4):533-40. [DOI:10.1016/S1093-0191(01)00079-X]
21. Romero-Gonzalez J, Peralta-Videa J, Rodrıguez E, Ramirez S, Gardea-Torresdey J. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. Zh Khim Termodin Termokhim 2005;37(4):343-7. [DOI:10.1016/j.jct.2004.09.013]
22. Yavuz R, Orbak İ, Karatepe N. Factors affecting the adsorption of chromium(VI) on activated carbon. J Environ Sci Heal A 2006;41(9):1967-80. [DOI:10.1080/10934520600779265]
23. Gottipati R. Preparation and characterization of microporous activated carbon from biomass and its application in the removal of chromium(VI) from aqueous phase: National Institute of Technology Rourkela; 2012.
24. Hu J, Wang S, Shao D, Dong Y, Li J, Wang X. Adsorption and reduction of chromium(VI) from aqueous solution by multi-walled carbon nanotubes. Open Environ Pollut Toxicol J 2009;1:66-73. [DOI:10.2174/1876397900901010066]
25. Barakat M. Adsorption of heavy metals from aqueous solutions on synthetic zeolite. Res J Environ Sci. 2008;2(1):13-22. [DOI:10.3923/rjes.2008.13.22]
26. Asgari G, Rahmani AR, Faradmal J, Seid Mohammadi AM. Kinetic and isotherm of hexavalent chromium adsorption onto nano hydroxyapatite. J Res Health Sci 2012;12(1):45-53.
27. Rosales-Landeros C, Barrera-Díaz CE, Bilyeu B, Guerrero VV, Nú-ez FU. A review on Cr(VI) adsorption using inorganic materials. Am J Anal Chem 2013;4(07):8-16. [DOI:10.4236/ajac.2013.47A002]
28. Zwain HM, Vakili M, Dahlan I. Waste material adsorbents for zinc removal from wastewater: a comprehensive review. Int J Chem Eng 2014;2014.
29. Kotaś J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ Pollut 2000;107(3):263-83. [DOI:10.1016/S0269-7491(99)00168-2]
30. Yu-jiangh L, Mini Y, Xiao-jin Z, Tao W, Nan C, Na W, et al. Adsorption removal of thiocyanate from aqueous solution by calcined. J Environ Sci 2006;18(1):23–8.
31. Sutton R. Chromium-6 in US tap water: Environmental Working Group; 2010.
32. Zhitkovich A. Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 2011;24(10):1617-29. [DOI:10.1021/tx200251t]
33. Fournier-Salaün M-C, Salaün P. Quantitative determination of hexavalent chromium in aqueous solutions by UV-Vis spectrophotometer. Cent Eur J Chem;5(4):1084-93. [DOI:10.2478/s11532-007-0038-4]
34. Neuss JD, Rieman III W. The Application of the Glass Electrode to a Study of Chromic Acid. J Am Chem Soc 1934;56(11):2238-43. [DOI:10.1021/ja01326a010]
35. Tandon RK, Crisp PT, Ellis J, Baker RS. Effect of pH on chromium(VI) species in solution. Talanta. 1984;31(3):227-8. [DOI:10.1016/0039-9140(84)80059-4]
36. Mills SJ, Christy AG, Génin JMR, Kameda T, Colombo F. Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineral Mag 2012;76(5):1289-336. [DOI:10.1180/minmag.2012.076.5.10]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb