Write your message
Volume 11, Issue 1 (January-Fabruary 2017)                   IJT 2017, 11(1): 1-9 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abnosi M H, Gholami S. Cadmium treatment of rats caused impairment of osteogenic potential of bone marrow mesenchymal stem cells: a possible mechanism of cadmium related osteoporosis . IJT 2017; 11 (1) :1-9
URL: http://ijt.arakmu.ac.ir/article-1-524-en.html
1- Department of Biology, Arak University, Arak, Iran , m-abnosi@araku.ac.ir
2- Department of Biology, Arak University, Arak, Iran
Abstract:   (5605 Views)

Background: The mechanism of cadmium induced osteoporosis is not well understood, so in this study, we examined the toxicity of bone marrow mesenchymal stem cell (MSCs) following treatment of rats with CdCl2 in drinking water, to revile the effect of this chemical on differentiation potential of MSCs.

Methods: At the end of third passage, MSCs were grown in the osteogenic medium for 21 days. To study the differentiation property the viability, morphology, intracellular calcium, and matrix mineralization via quantitative alizarin red were evaluated. Besides, biochemical parameters including activity of alkaline phosphatase (ALP), aspartate amino transaminase (AST), alanine amino transaminase (ALT) as well as antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase were determined too. In addition, level of lipid peroxidation based on determination of malondialdehyde (MDA) content was studied.

Results: The results showed significant reduction in the viability of cells after differentiation compared to control (P<0.05). The treatment of rats caused significant reduction in nuclear diameter. There was significant increase in (ALT) and (AST) activity whereas activity of ALP reduced significantly (P<0.05). The results showed significant reduction in the antioxidant enzyme activity and increases in (MDA). The mean bone matrix mineralization and intracellular calcium content of the MSCs also reduced significantly (P<0.05).

Conclusions: Oral consumption of cadmium affects osteogenic differentiation potential of MSCs via membrane damage, reduction of calcium deposition and metabolic changes. Thus, it might be considered as a probable factor involve in cadmium related osteoporosis.

Full-Text [PDF 528 kb]   (1379 Downloads)    
Type of Study: Research | Subject: Special

References
1. Doaa M, Ashraf S, Ahmed O, Amal S. Effect of cadmium on the testes of adult albino rats and the ameliorating effect of zinc and vitamin E. British J Sci 2014;11(1):72-95.
2. Abnosi MH, Soliemani H. Cadmium affects viability of bone marrow mesenchymal stem cells through membrane impairment, intracellular calcium elevation and DNA breakage. Indian J Med Sci 2010;64(4):177-86. [DOI:10.4103/0019-5359.97357]
3. Chen X, Qin B, Li X, Jin T, Zhu G, Zhou W, et al. Effects of fluoride and cadmium co-exposure on bone in male rats. Biol Trace Element Res 2013;154(3):396-402. [DOI:10.1007/s12011-013-9750-4]
4. Brzoska MM, Moniuszko-Jakoniuk J. Bone metabolism of male rats chronically exposed to cadmium. Toxicol Appl Pharmacol 2005;207(3):195-211. [DOI:10.1016/j.taap.2005.01.003]
5. Mehranjani MS, Mosavi M. Cadmium chloride toxicity suppresses osteogenic potential of rat bone marrow mesenchymal stem cells through reducing cell viability and bone matrix mineralization. Indian J Med Sci 2011;65(4):157-67. [DOI:10.4103/0019-5359.104779]
6. Abnosi MH, Shojafar E. Biochemical and morphological changes in bone marrow mesenchymal stem cells induced by treatment of rats with pNonylphenol. Iran J Basic Med Sci 2015;18:317-24.
7. Järup L, Alfvén T, Persson B, Toss G, Elinder G. Cadmium may be a risk factor for osteoporosis. Occup Environ Med 1998;55:435–9. [DOI:10.1136/oem.55.7.435]
8. Blainey JD, Adams RG, Brewer DB, Harvey TC. Cadmium-induced osteomalacia. British J Industr Med 1980;37(3):278-84. [DOI:10.1136/oem.37.3.278]
9. Chen X, Zhu G, Gu S, Jin T, Shao C. Effects of cadmium on osteoblasts and osteoclasts in vitro. Environ Toxicol Pharmacol 2009;28(2):232-6. [DOI:10.1016/j.etap.2009.04.010]
10. Akesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, et al. Admium-Induced Effects on Bone in a Population-Based Study of Women. Environ Health Perspect 2006;114:830–4. [DOI:10.1289/ehp.8763]
11. Kazantzis G. Cadmium, osteoporosis and calcium metabolism. Biometals 2004;17(5):493-8. [DOI:10.1023/B:BIOM.0000045727.76054.f3]
12. Engström A, S Skerving, Lidfeldt J, Burgaz A, Lundh T, Samsioe G, et al. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D. Environ Res 2009;109(2):188-92. [DOI:10.1016/j.envres.2008.10.008]
13. Wallin M, Sallsten G, Fabricius-Lagging E, Ohrn C, Lundh T, Barregard L. Kidney cadmium levels and associations with urinary calcium and bone mineral density: a cross-sectional study in Sweden. Environ Health 2013;12:22-3. [DOI:10.1186/1476-069X-12-22]
14. Martin RM, Cardoso MC. Chromatin condensation modulates access and binding of nuclear proteins. FASEB J 2010;24(4):1066-72. [DOI:10.1096/fj.08-128959]
15. Gerlitz G, Bustin M. Efficient cell migration requires global chromatin condensation. J Cell Sci 2010;123(13):2207-17. [DOI:10.1242/jcs.058271]
16. Ayala A, Mu-oz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative MedCellr Longevity 2014;2014.
17. Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol 2000;153(1-3):83-104. [DOI:10.1016/S0300-483X(00)00306-1]
18. Patra RC, Rautray A, Swarup D. OxidativeStressinLeadandCadmiumToxicityand ItsAmelioration. Vet Med 2011; 2011: 457327-8.
19. Prabu SM, Muthumani M, Shagirthab K. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats. Saudi J Biol Sci 2012;19(2):229–39. [DOI:10.1016/j.sjbs.2012.01.005]
20. Shagirtha K, Muthumani M, Prabu SM. Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Europ Rev MedPharmacol Sci 2011;15(9):1039-50.
21. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics Med Chem 2001;1(6):529-39. [DOI:10.2174/1568026013394831]
22. Brzoska MM, Rogalska J, Kupraszewicz E. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: a study in a rat model of moderate and relatively high human exposure. Toxicol Appl Pharmacol 2011;250(3):327-35. [DOI:10.1016/j.taap.2010.11.012]
23. Takada Y, Noguchi T. Characteristics of alanine: glyoxylate aminotransferase from Saccharomyces cerevisiae, a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates. Biochem J 1985;231(1):157-63. [DOI:10.1042/bj2310157]
24. Ramırez-Bajo MJ, DeAtauri P, Ortega F, Westerhoff HV, Gelpı JL, Centelles JJ, et al. Effects of Cadmium and Mercury on the Upper Part of Skeletal Muscle Glycolysis in Mice. PLos One 2014;9:e80018-9. [DOI:10.1371/journal.pone.0080018]
25. Suzuki Y, Morita I, Yamane Y, Murota S. Preventive effects of zinc on cadmium-induced inhibition of alkaline phosphatase activity and mineralization activity in osteoblast-like cells, MC3T3-E1. J Pharmaco Dynamics 1989;12(2):94-9. [DOI:10.1248/bpb1978.12.94]
26. Leboy PS, Vaias L, Uschmann B, Golub E, Adams SL, Pacifici M. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes. J BiolChem 1989;264(29):17281-6.
27. Zhang L, Balcerzak M, Radisson J, Thouverey C, Pikula S, Azzar G, et al. Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca(2+) and phosphate deposition in isolated chicken matrix vesicles. J BiolChem 2005;280(44):37289-96. [DOI:10.1074/jbc.M504260200]
28. Schoenmakers TJ, Klaren PH, Flik G, Lock RA, Pang PK, Bonga SE. Actions of cadmium on basolateral plasma membrane proteins involved in calcium uptake by fish intestine. J Membr Biol 1992;127(3):161-72. [DOI:10.1007/BF00231504]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb