Write your message
Volume 11, Issue 5 (September-October 2017)                   IJT 2017, 11(5): 45-51 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Srivastav S, Mishra D, Srivastav S K, Suzuki N, Srivastav A K. Estradiol Affects Prolactin Producing Cells and Calcium levels in a Teleost, Heteropneustesfossilis, Kept in Different Calcium Concentrations. IJT 2017; 11 (5) :45-51
URL: http://ijt.arakmu.ac.ir/article-1-538-en.html
1- Department of Zoology, Shiv Harsh Kisan P. G. College, Basti-272001, India.
2- Department of Zoology, Government Girls’ P. G. College, Ghazipur-233001, India.
3- Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur-273009, India.
4- PhD. Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa, Japan.
5- Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur-273009, India. , ajaiksrivastav@hotmail.com
Abstract:   (4251 Views)
Background: This study investigated the effects of estradiol on plasma calcium and prolactin cells of Heteropneustes fossilis kept in calcium-deficient and normal freshwater.
Methods: Fish were deprived of food and divided into groups A-D. Group A and B were kept in artificial freshwater with normal electrolytes. Group C and D were maintained in calcium-deficient freshwater. Vehicle was administered to groups A and C. Groups B and D were injected with estradiol. Plasma calcium levels and prolactin cells were studied after 1, 3, 5, 10 and 15 days.
Results: Normal-calcium freshwater: In group A calcium levels remained unaffected. In group B, estradiol provoked hypercalcemia from day 3 to 10 although calcium decreased after day 15. Prolactin cells in group B became degranulated after 10day. Nuclear volume increased from day 10 onwards.
Calcium-deficient freshwater: Calcium levels in group C decreased from day 1 to 3 thereafter increased from day 5 to 15. Plasma calcium of group D increased from day 3 to 15. In group C prolactin cells exhibited hyperactivity on day 3 and degranulation on day 5. Nuclear volume increased from day 5 onwards. On day 10 and 15 certain cells became degenerated. In group D degranulation of prolactin cells began on day 3 which proceeded to complete degranulation on day 10. Nuclear volume increased from day 5 onwards.
Conclusions: Estradiol enhanced prolactin production and increased blood calcium in food-deprived fishes kept in calcium-deficient medium suggesting that calcium needed for elevation of blood calcium was derived from internal sources.
Full-Text [PDF 942 kb]   (1216 Downloads)    
Type of Study: Research | Subject: General

References
1. Pang PK. Hypercalcemic effects of ovine prolactin on intact killifish, Fundulus heteroclitus, subjected to different environmental calcium challenges. Gen Comp Endocrinol 1981;44(2):252-5. [DOI:10.1016/0016-6480(81)90256-2]
2. Flik G, Fenwick J, Kolar Z, Mayer-Gostan N, Bonga SW. Effects of ovine prolactin on calcium uptake and distribution in Oreochromis mossambicus. Am J Physiol Regul Integr Comp Physiol 1986;250(2):R161-R6. [DOI:10.1152/ajpregu.1986.250.2.R161]
3. Williams A, Wigham T. The regulation of prolactin cells in the rainbow trout (Oncorhynchus mykiss): 1. Possible roles for thyrotropin-releasing hormone (TRH) and oestradiol. Gen Comp Endocrinol 1994; 93(3):388-97. [DOI:10.1006/gcen.1994.1043]
4. Barry TP, Grau EG. Estradiol-17β and thyrotropin-releasing hormone stimulate prolactin release from the pituitary gland of a teleost fish in vitro. Gen Comp Endocrinol 1986;62(2):306-14. [DOI:10.1016/0016-6480(86)90121-8]
5. Olivereau M, Olivereau J. Prolactin, hypercalcemia and corpuscles of Stannius in seawater eels. J Cell Tissue Res 1978;186(1):81-96. [DOI:10.1007/BF00219656]
6. Srivastav S, Swarup K. Structure and behaviour of the corpuscles of Stannius, the ultimobranchial gland and the prolactin cells in response to prolactin-induced hypercalcemia in male catfish, Clarias batrachus (L.). Monit Zool Ital 1985;19(3):111-20.
7. Flik G, Bonga SEW, Fenwick JC. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activities in plasma membranes of eel gill epithelium-III. Stimulation of branchial high-affinity Ca2+-ATPase activity during prolactin-induced hypercalcemia in American eels. Comp Biochem 1984;79(4):521-4. [DOI:10.1016/0305-0491(84)90359-6]
8. Fontaine M. The hormonal control of water and salt-electrolyte metabolism in fish. Mem Soc Endocrinol 1956; 5:69-81.
9. Pang PKT, Pang RK, Sawyer WH. Effects of environmental calcium and replacement therapy on the killifish, Fundulus heteroclitus after the surgical removal of the corpuscles of Stannius. Endocrinol 1973; 93:705-710. [DOI:10.1210/endo-93-3-705]
10. Hasegawa S, Hirano T, Kawauchi H. Sodium-retaining activity of chum salmon prolactin in some euryhaline teleosts. Gen Comp Endocrinol 1986; 63(2):309-17. [DOI:10.1016/0016-6480(86)90169-3]
11. Fargher RC, McKeown BA. The effect of prolactin on calcium homeostasis in coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol 1989;73(3):398-403. [DOI:10.1016/0016-6480(89)90197-4]
12. Bonga SW, Pang P. Control of calcium regulating hormones in the vertebrates: parathyroid hormone, calcitonin, prolactin, and stanniocalcin. Int Rev Cyto 1991;128:139-213. [DOI:10.1016/S0074-7696(08)60499-4]
13. Bailey RE. The effect of estradiol on serum calcium, phosphorus, and protein of goldfish. J Exp Zool 1957;136(3):455-69. [DOI:10.1002/jez.1401360304]
14. Chen TT. Identification and characterization of estrogen-responsive gene products in the liver of rainbow trout. Can J Biochem Cell Biol 1983;61(7):802-10. [DOI:10.1139/o83-102]
15. Bjornsson B Th, Haux C, Bern HA. 17β-estradiol increases plasma calcitonin levels in salmonid fish. Endocrinol 1989;125(4):1754-9. [DOI:10.1210/endo-125-4-1754]
16. Kwon H, Hayashi S, Mugiya Y. Vitellogenin induction by estradiol-17β in primary hepatocyte culture in the rainbow trout, Oncorhynchus mykiss. Comp Biochem1993;104(2):381-6. [DOI:10.1016/0305-0491(93)90383-G]
17. Persson P, Sundell K, Björnsson BT. Estradiol-17β-induced calcium uptake and resorption in juvenile rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem1994;13(5):379-86. [DOI:10.1007/BF00003417]
18. Persson P, Takagi Y, Björnsson BT. Tartrate resistant acid phosphatase as a marker for scale resorption in rainbow trout, Oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding. Fish Physiol Biochem 1995;14(4):329-39. [DOI:10.1007/BF00004071]
19. Yeo I-K, Mugiya Y. Effects of extracellular calcium concentrations and calcium antagonists on vitellogenin induction by estradiol-17β in primary hepatocyte culture in the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 1997;105(3):294-301. [DOI:10.1006/gcen.1996.6830]
20. Gillespie DK, de Peyster A. Plasma calcium as a surrogate measure for vitellogenin in fathead minnows (Pimephales promelas). Ecotoxicol Environ Saf 2004;58(1):90-5. [DOI:10.1016/j.ecoenv.2003.09.005]
21. Fleming W, Stanley J, Meier A. Seasonal effects of external calcium, estradiol, and ACTH on the serum calcium and sodium levels of Fundulus kansae. Gen Comp Endocrinol 1964;4(1):61-7. [DOI:10.1016/0016-6480(64)90037-1]
22. Mugiya Y, Watabe N. Studies on fish scale formation and resorption—II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Physiol 1977;57(2):197-202. [DOI:10.1016/0300-9629(77)90455-8]
23. Carragher JF, Sumpter JP. The mobilization of calcium from calcified tissues of rainbow trout (Oncorhynchus mykiss) induced to synthesize vitellogenin. Physiol 1991;99(1-2):169-72. [DOI:10.1016/0300-9629(91)90253-9]
24. Mugiya Y, Hazama K. Effects of Stannius Corpuscle Extracts and 17β-Estradiol on the concentration of gallbladder bile calcium in the rainbow trout, Oncorhynchus mykiss. Jpn J Ichthyol 1994;41(2):117-22.
25. Pinto P, Estêvão MD, Redruello B, Socorro S, Canario AV, Power D. Immunohistochemical detection of estrogen receptors in fish scales. Gen Comp Endocrinol 2009;160(1):19-29. [DOI:10.1016/j.ygcen.2008.10.011]
26. Mugiya Y, Ichii T. Effects of estradiol-17β on branchial and intestinal calcium uptake in the rainbow trout, Salmo gairdneri. Physiol 1981;70(1):97-101. [DOI:10.1016/0300-9629(81)90402-3]
27. Oguro C, Pang P. Comparative endocrinology of calcium regulation. Japan Scientific Societies Press, Tokyo. 1982.p.21-6.
28. Björnsson BT, Haux C. Distribution of calcium, magnesium and inorganic phosphate in plasma of estradiol-17β treated rainbow trout. J Comp Physiol B 1985;155(3):347-52. [DOI:10.1007/BF00687477]
29. Norberg B, Björnsson BT, Brown CL, Wichardt U-P, Deftos LJ, Haux C. Changes in plasma vitellogenin, sex steroids, calcitonin, and thyroid hormones related to sexual maturation in female brown trout (Salmo trutta). Gen Comp Endocrinol 1989;75(2):316-26. [DOI:10.1016/0016-6480(89)90085-3]
30. Madsen SS, Korsgaard B. Opposite effects of 17β-estradiol and combined growth hormone-Cortisol treatment on hypo-osmoregulatory performance in sea trout presmolts, Salmo trutta. Gen Comp Endocrinol 1991;83(2):276-82. [DOI:10.1016/0016-6480(91)90031-Z]
31. Wendelaar Bonga SE, Van der Meij J, Flik G. Prolactin and acid stress in the teleost Oreochromis (formerly Sarotherodon) mossambicus. Gen Comp Endocrinol 1984;55(2):323-32. [DOI:10.1016/0016-6480(84)90118-7]
32. Flik G, Fenwick JC, Kola, Z, Mayer-Gostan N, Wendelaar Bonga SE. Effects of low ambient calcium levels on whole body Ca2+ flux rates and internal calcium pools in the freshwater cichlid teleost, Oreochromis mossambicus. J Exp Biol 1986;120(1):249-64.
33. Wendelaar Bonga SE, Van der Meij J. Effect of ambient osmolarity and calcium on prolactin cell activity and osmotic water permeability of the gills in the teleost Sarotherodon mossambicus. Gen Comp Endocrinol 1981;43(4):432-42. [DOI:10.1016/0016-6480(81)90227-6]
34. Fenwick JC. The renal handling of calcium and renal Ca2+ (Mg2+)-activated adenosine-triphosphatase activity in freshwater-and seawater-acclimated North American eels (Anguilla rostrata LeSueur). Can J Zool 1981;59(3):478-85. [DOI:10.1139/z81-070]
35. Nagahama Y, Nishioka RS, Bern HA, Gunther RL. Control of prolactin secretion in teleosts, with special reference to Gillichthys mirabilis and Tilapia mossambica. Gen Comp Endocrinol 1975;25(2):166-88. [DOI:10.1016/0016-6480(75)90187-2]
36. Wendelaar Bonga SE, Flik G. Prolactin and calcium metabolism in a teleost fish, Sarotherodon mossambicus. 1982.
37. Wendelaar Bonga SE, Flik G, Löwik C, Van Eys G. Environmental control of prolactin synthesis in the teleost fish Oreochromis (formerly Sarotherodon) mossambicus. Gen Comp Endocrinol 1985;57(3):352-9. [DOI:10.1016/0016-6480(85)90214-X]
38. Wendelaar Bonga SE, Pang R, Pang P. Hypocalcemic effects of bovine parathyroid hormone (1–34) and stannius corpuscle homogenates in teleost fish adapted to low‐calcium water. J Exp Zool Part A 1986;240(3):363-7. [DOI:10.1002/jez.1402400310]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb