Write your message
Volume 11, Issue 5 (September-October 2017)                   IJT 2017, 11(5): 37-44 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shakoori A, Mahasti P, Moradi V. Determination of Twenty Organophosphorus Pesticides in Wheat Samples from Different Regions of Iran . IJT. 2017; 11 (5) :37-44
URL: http://ijt.arakmu.ac.ir/article-1-539-en.html
1- PhD and Pharm D, Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. , a.shakoori@sbmu.ac.ir
2- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Abstract:   (4463 Views)
Background: Organophosphorus pesticides are widely used in agriculture, homes, gardens, and veterinary practices. Extensive application of pesticides in agriculture often results in residues of these compounds being absorbed into the foods, including wheat. The aim of this study was to evaluate the residue levels of 20 organophosphorus pesticides in wheat samples collected from different regions of Iran.
Methods: This research reports a rapid, specific and sensitive multiresidue method based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) sample preparation method and gas chromatography with mass spectrometric detection in the selected ion monitoring mode (GC–SIM–MS) to evaluate 20 organophosphorus  pesticides in wheat samples.
Results: In the concentration range of 20-200 ng/g, the calibration curves for each analyte was linear with a determination coefficient (R2) of 0.993 to 0.999. The limits of detection (LODs) and quantitation (LOQs) were between 2.5-6.7 and 7.5-20 ng/g, respectively. The mean recoveries obtained for three fortification levels (25, 50 and 100 ng/g, five replicates each) were 80-114% with a satisfactory precision (RSD<20%). 31.1% samples contained residues of one or more target compounds. Chlorpyrifos was the most common residue (17.8%), followed by pirimiphos-methyl (6.7%), diazinon (4.4%), chlorpyrifos-methyl (1.1%) and malathion (1.1%).
Conclusion: Among the detected pesticides, only diazinon and malathion are permitted pesticides for wheat production in Iran. However, their concentrations were below the maximum residue levels (MRLs) established by the Iranian National Standard Organization (INSO).
Full-Text [PDF 151 kb]   (1006 Downloads)    
Type of Study: Research | Subject: Special

1. Gavrilescu M. Fate of pesticides in the environment and its bioremediation. Eng Life Sci 2005; 5(6): 497-526. [DOI:10.1002/elsc.200520098]
2. Blasco C, Fernandez M, Pena A, Lino C, Silveira M, Font G, Pico Y. Assessment of pesticide residues in honey samples from Portugal and Spain. J Agric Food Chem 2003; 51(27): 8132-8. [DOI:10.1021/jf034870m]
3. Leong KH, Tan LB, Mustafa AM. Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere 2007; 66 (6): 1153-9. [DOI:10.1016/j.chemosphere.2006.06.009]
4. Munoz-Quezada M, Boris A, Lucero BA, Barr D B, Steenland K, Levy K, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. Neurotoxicology 2013; 39:158-68. [DOI:10.1016/j.neuro.2013.09.003]
5. Ojha A, Yaduvanshi SK, Srivastava N. Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pestic Biochem Physiol 2011; 99: 148-56. [DOI:10.1016/j.pestbp.2010.11.011]
6. Environmental Protection Agency (EPA). Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates. Washington D.C: U.S.E.P. Agency. 2011.
7. Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett 2012; 210: 155-68. [DOI:10.1016/j.toxlet.2011.10.007]
8. Verma R S, Mehta A, Srivastava N. Comparative studies on chlorpyrifos and methyl parathion induced oxidative stress in different parts of rat brain: Attenuation by antioxidant vitamins. Pestic Biochem Physiol 2009; 95: 152-8. [DOI:10.1016/j.pestbp.2009.08.004]
9. Koprucu S, Koprucu K, Ural M, Ispir U, Pala M. Acute toxicity of organophosphorus pesticide diazinon and its effects on behaviour and some haematological parameters of fingerling European catfish. Pestic Biochem Physiol 2006; 86: 99-105. [DOI:10.1016/j.pestbp.2006.02.001]
10. Turgut C. The impact of pesticides toward parrotfeather when applied at the predicted environmental oncentration. Chemosphere 2007; 66 (3): 469-73. [DOI:10.1016/j.chemosphere.2006.05.073]
11. Galloway T, Handy R. Immunotoxicity of organophosphorus pesticides. Ecotoxicology 2003; 12: 345-63. [DOI:10.1023/A:1022579416322]
12. Waddell BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, Burmeister LF, et al. Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States). Cancer Causes Control 2001; 12 (6):509-17. [DOI:10.1023/A:1011293208949]
13. Brown LM, Blair A, Gibson R, Everett GD, Cantor KP, Schuman LM, et al. Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res 1990; 50 (20): 6585-91.
14. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol 2014;13(3):330-8. [DOI:10.1016/S1474-4422(13)70278-3]
15. Fenik J, Tankiewicz M, Biziuk M. Properties and determination of pesticides in fruits and vegetables. Trends Analyt Chem 2011; 30: 814-25. [DOI:10.1016/j.trac.2011.02.008]
16. Anastassiades M, Lehotay S J, Štajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J AOAC Int 2003; 86(2): 412-31.
17. Lehotay SJ, Maˇstovská K, Lightfield AR. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J AOAC Int 2005; 88:615-29.
18. Takatori S, Okihashi M, Okamoto Y, Kitagawa Y, Kakimoto S, Murata H, et al. A rapid and easy multi residue method for the determination of pesticide residues in vegetables, fruits, and cereals using liquid Chromatography/tandem mass spectrometry. J AOAC Int 2008; 91: 871-83.
19. Lacina O, Zachariasova M, Urbanova J, Vaclavikova M, Cajka T, Hajslova J. Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2012; 1262: 8- 18. [DOI:10.1016/j.chroma.2012.08.097]
20. Iranian National Standard Organization (INSO). Pesticides -Maximum residue limit of pesticides - Cereals, 13120, 1st edition. http://isiri.gov.ir/portal/file/?423040/13120.pdf
21. European Commission. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. SANCO/12571. 2013.
22. Collins D A. A review of alternatives to organophosphorus compounds for the control storage mites. J Stored Prod Res 2006; 42: 395-426. [DOI:10.1016/j.jspr.2005.08.001]
23. Jaga K, Dharmani C. Sources of exposure to and public health implications of organophosphate pesticides. Rev Panam Salud Publica 2003; 14(3):171-85. [DOI:10.1590/S1020-49892003000800004]
24. Castorina R, Bradman A, Fenster L, Barr DB, Bravo R, Vedar MG. Comparison of current use pesticide and other toxicant urinary metabolite levels among pregnant women in the CHAMACOS cohort and NHANES. Environ Health Perspect 2011;118(6): 856-63. [DOI:10.1289/ehp.0901568]
25. Lin MF, Wu CL, Wang TC. Pesticide clastogenicity in Chinese hamster ovary cells. Mutat Res 1987;188: 241-50. [DOI:10.1016/0165-1218(87)90095-4]
26. Alavanja MC, Samanic C, Dosemeci M, Lubin J, Tarone R, Lynch CF, et al. Use of agricultural pesticides and prostate cancer risk in the Agricultural Health study cohort. Am J Epidemiol 2003; 157: 800-14. [DOI:10.1093/aje/kwg040]
27. Colborn T. A case for revisiting the safety of pesticides: a closer look at neurodevelopment. Environ Health Perspect 2006; 114(1):10-7. [DOI:10.1289/ehp.7940]
28. Slotkin TA, Seidler FJ. Oxidative and excitatory mechanisms of developmental neurotoxicity: transcriptional profiles for chlorpyrifos, diazinon, dieldrin, and divalent nickel in PC12 cells. Environ Health Perspect 2009; 117(4):587-96. [DOI:10.1289/ehp.0800251]
29. Lee JE, Park JH, Shin IC, Koh HC. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharmacol 2012; 263(2):148-62. [DOI:10.1016/j.taap.2012.06.005]
30. Hodgson E, Rose RL. Metabolic interactions of agrochemicals in humans. Pest Manag Sci 2008; 64(6):617-21. [DOI:10.1002/ps.1563]
31. Wang H-P, Liang Y-J, Zhang Q, Long D-X, Li W, Li L, et al. Changes in metabolic profiles of urine from rats following chronic exposure to anticholinesterase pesticides. Pestic Biochem Physiol 2011; 101(3):232-9. [DOI:10.1016/j.pestbp.2011.09.011]
32. Smegal DC. Human health risk assessment chlorpyrifos. US Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, Health Effects Division, US Government Printing Office: Washington, DC. 2000:1-131.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb