Write your message
Volume 11, Issue 2 (March-April 2017)                   IJT 2017, 11(2): 21-28 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khoshnamvand M, Almasieh K, Kaboodvandpour S. Mercury Biomagnification between Two Trophic Levels of a Grazing Food Chain (Plankton and Planktivorous Fish) in a Fresh Water Ecosystem . IJT 2017; 11 (2) :21-28
URL: http://ijt.arakmu.ac.ir/article-1-540-en.html
1- PhD Student Environmental Sciences, Research Center of Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, China.
2- Department of Environmental Sciences, University of Kurdistan, Sanandaj, Iran.
3- Department of Environmental Sciences, University of Kurdistan, Sanandaj, Iran. , s.kaboodvandpour@uok.ac.ir
Abstract:   (6187 Views)

Background: The Present study was carried out to track and calculate Biomagnification Factor (BMF) of total mercury (T-Hg) between two different trophic levels (i.e., plankton and a planktivorous fish) in a fresh water grazing food chain.

Methods: Experimental organisms were planktonic biomass and silver carp (Hypophthalmichthys molitrix) as a planktivorous fish. Silver carp samples were obtained from randomly selected points from different sampling stations. The concentrations of T-Hg in collected samples were determined by Advanced Mercury Analyzer.

Results: Means of T-Hg in planktonic biomass and muscle tissue of silver carp were 78.21 ± 3.13 and 367.12 ± 26.43 ng g-1 dry weights, respectively. Mean T-Hg in plankton, sampled fish during the study months and amongst the sampling stations did not show significant differences. The BMFHg(plankton-fish) was differ among months; moreover, calculated BMF was greater than 1 during study months, which means biomagnification was occurring in SGR. The concentration of T-Hg in the muscle tissue of all fish samples that weighed more than 850 gr was higher than the acceptable limits based on EPA (300 ng g-1) and WHO (500 ng g-1) standards. The highest BMFHg was observed in August

Conclusion: It seems that mercury pollution of SGR has a natural source. The calculated BMFs were greater than 1 and the concentrations of T-Hg in muscle tissues of those samples weighing more than 850 gr were higher than FAO and WHO standards. Therefore, consumption of the SGR's silver carp must be accompanied by serious health considerations.

Full-Text [PDF 206 kb]   (2050 Downloads)    
Type of Study: Research | Subject: General

References
1. Eagles-Smith CA, Ackerman JT. Mercury bioaccumulation in estuarine wetland fishes: Evaluating habitats and risk to coastal wildlife. Environ Pollut 2014;193:147-55. [DOI:10.1016/j.envpol.2014.06.015]
2. Eisler R. Mercury hazards to living organisms: CRC Press; 2006. [DOI:10.1201/9781420008838]
3. Wang X, Qu R, Wei Z, Yang X, Wang Z. Effect of water quality on mercury toxicity to Photobacterium phosphoreum: Model development and its application in natural waters. Ecotoxicol Environ Saf 2014;104:231-8. [DOI:10.1016/j.ecoenv.2014.03.029]
4. Zalups RK. Molecular interactions with mercury in the kidney. Pharmacol Rev 2000;52(1):113-44.
5. Storelli M, Giacominelli-Stuffler R, Marcotrigiano G. Total and methylmercury residues in cartilaginous fish from Mediterranean Sea. Mar Pollut Bull 2002;44(12):1354-8. [DOI:10.1016/S0025-326X(02)00223-0]
6. Verta M, Salo S, Korhonen M, Porvari P, Paloheimo A, Munthe J. Climate induced thermocline change has an effect on the methyl mercury cycle in small boreal lakes. Sci Total Environ 2010;408(17):3639-47. [DOI:10.1016/j.scitotenv.2010.05.006]
7. Jagtap R, Maher W. Measurement of mercury species in sediments and soils by HPLC–ICPMS. Microchemical J 2015;121:65-98. [DOI:10.1016/j.microc.2015.01.010]
8. Rumengan IF, Rumampuk D, Limbong D, Arai T, Miyazaki N. Total mercury contents in plankton collected from Talawaan Watershed, north Sulawesi, Indonesia. Otsuchi Mar Sci 2003;28:80-3.
9. Bełdowski J, Miotk M, Bełdowska M, Pempkowiak J. Total, methyl and organic mercury in sediments of the Southern Baltic Sea. Mar Pollut Bull 2014;87(1):388-95. [DOI:10.1016/j.marpolbul.2014.07.001]
10. Nguetseng R, Fliedner A, Knopf B, Lebreton B, Quack M, Rüdel H. Retrospective monitoring of mercury in fish from selected European freshwater and estuary sites. Chemosphere 2015;134:427-34. [DOI:10.1016/j.chemosphere.2015.04.094]
11. Marrugo-Negrete J, Benitez LN, Olivero-Verbel J. Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Arch Environ Contam Toxicol 2008;55(2):305-16. [DOI:10.1007/s00244-007-9129-7]
12. Sedláčková L, Kružíková K, Svobodová Z. Mercury speciation in fish muscles from major Czech rivers and assessment of health risks. Food Chem 2014;150:360-5. [DOI:10.1016/j.foodchem.2013.10.041]
13. Mailman M, Stepnuk L, Cicek N, Bodaly RD. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review. Sci Total Environ 2006;368(1):224-35. [DOI:10.1016/j.scitotenv.2005.09.041]
14. Gao Y, Shi Z, Long Z, Wu P, Zheng C, Hou X. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem J 2012;103:1-14. [DOI:10.1016/j.microc.2012.02.001]
15. Canli M, Atli G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 2003;121(1):129-36. [DOI:10.1016/S0269-7491(02)00194-X]
16. Mason R, Reinfelder J, Morel F. Bioaccumulation of mercury and methylmercury. Mercury as a Global Pollutant: Springer; 1995. p. 915-21. [DOI:10.1007/978-94-011-0153-0_98]
17. Bargagli R, Monaci F, Sanchez-Hernandez J, Cateni D. Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Prog Ser1998;169:65-76. [DOI:10.3354/meps169065]
18. Houserova P, Kubáň V, Kráčmar S, Sitko J. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environ pollut 2007;145(1):185-94. [DOI:10.1016/j.envpol.2006.03.027]
19. Gobas FA, McCorquodale JR, Haffner G. Intestinal absorption and biomagnification of organochlorines. Environ Toxicol Chem 1993;12(3):567-76. [DOI:10.1002/etc.5620120316]
20. Spataru P, Gophen M. Feeding behaviour of silver carp Hypophthalmichthys molitrix Val. and its impact on the food web in Lake Kinneret, Israel. Hydrobiologia1985;120(1):53-61. [DOI:10.1007/BF00034590]
21. Akbarpour A, Nasri F, editors. Assessment of heavy metals pollution in Gheshlagh Dam watersheds, Sanandaj, Iran. Proceedings of the 22nd Symposium on Geo Science; 2004.
22. Souri B, Watanabe M. Mercury concentration in some calcareous soils of western Iran with a focus on pedological evolution and weathering process. Environ Earth Sci 2013;70(3):1249-62. [DOI:10.1007/s12665-012-2211-0]
23. Suthers IM, Rissik D. Plankton: A guide to their ecology and monitoring for water quality: CSIRO publishing; 2009.
24. Voegborlo R, Akagi H. Determination of mercury in fish by cold vapour atomic absorption spectrometry using an automatic mercury analyzer. Food Chem 2007;100(2):853-8. [DOI:10.1016/j.foodchem.2005.09.025]
25. Wong AH, McQueen DJ, Williams DD, Demers E. Transfer of mercury from benthic invertebrates to fishes in lakes with contrasting fish community structures. Can J Fish Aquat Sci 1997;54(6):1320-30. [DOI:10.1139/f97-035]
26. Connell DW. Biomagnification by aquatic organisms-a proposal. Chemosphere 1989;19(10-11):1573-84. [DOI:10.1016/0045-6535(89)90501-8]
27. Khoshnamvand M, Kaboodvandpour S, Ghiasi F. A comparative study of accumulated total mercury among white muscle, red muscle and liver tissues of common carp and silver carp from the Sanandaj Gheshlagh Reservoir in Iran. Chemosphere 2013;90(3):1236-41. [DOI:10.1016/j.chemosphere.2012.09.061]
28. Amani K. Determination of pollutants concentration in Sanandaj Gheshlagh Reservoir water and its branches. Department of Environment Protection. Sanandaj, Iran; 2008.p.127-8.
29. Jewett SC, Zhang X, Naidu AS, Kelley JJ, Dasher D, Duffy LK. Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaska rivers. Chemosphere 2003;50(3):383-92. [DOI:10.1016/S0045-6535(02)00421-6]
30. Romeo M, Siau Y, Sidoumou Zn, Gnassia-Barelli M. Heavy metal distribution in different fish species from the Mauritania coast. Sci Total Environ 1999;232(3):169-75. [DOI:10.1016/S0048-9697(99)00099-6]
31. Farkas A, Salánki J, Specziár A. Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res 2003;37(5):959-64. [DOI:10.1016/S0043-1354(02)00447-5]
32. Scerbo R, Ristori T, Stefanini B, De Ranieri S, Barghigiani C. Mercury assessment and evaluation of its impact on fish in the Cecina river basin (Tuscany, Italy). Environ pollut 2005;135(1):179-86. [DOI:10.1016/j.envpol.2004.07.027]
33. Gutiérrez-Galindo EA, Mu-oz GF, Flores AA. Mercury in freshwater fish and clams from the Cerro Prieto geothermal field of Baja California, Mexico. Bull Environ Contam Toxicol 1988;41(2):201-7. [DOI:10.1007/BF01705431]
34. Régine M-B, Gilles D, Yannick D, Alain B. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin). Sci Total Environ 2006;368(1):262-70. [DOI:10.1016/j.scitotenv.2005.09.077]
35. Farias RAd, Hacon S, Campos R, Argento R. Mercury contamination in farmed fish setup on former garimpo mining areas in the Northern Mato Grosso State, Amazonian region, Brazil. Sci Total Environ 2005;348(1):128-34.
36. Jin L, Liang L, Jiang G, Xu Y. Methylmercury, total mercury and total selenium in four common freshwater fish species from Ya-Er Lake, China. Environ Geochem Health 2006;28(5):401-7. [DOI:10.1007/s10653-005-9038-5]
37. Campbell L, Verburg P, Dixon D, Hecky R. Mercury biomagnification in the food web of Lake Tanganyika (Tanzania, East Africa). Sci Total Environ 2008;402(2):184-91. [DOI:10.1016/j.scitotenv.2008.04.017]
38. Tremblay A, Lucotte M, Schetagne R. Total mercury and methylmercury accumulation in zooplankton of hydroelectric reservoirs in northern Quebec (Canada). Sci Total Environ 1998;213(1):307-15. [DOI:10.1016/S0048-9697(98)00107-7]
39. Watras C, Back R, Halvorsen S, Hudson R, Morrison K, Wente S. Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 1998;219(2):183-208. [DOI:10.1016/S0048-9697(98)00228-9]
40. Back RC, Gorski PR, Cleckner LB, Hurley JP. Mercury content and speciation in the plankton and benthos of Lake Superior. Sci Total Environ 2003;304(1):349-54. [DOI:10.1016/S0048-9697(02)00580-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb