Write your message
Volume 11, Issue 4 (July-August 2017)                   IJT 2017, 11(4): 33-41 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shirmohammadi M, Salamat N, Ronagh M T, Movahedinia A, Hamidian G. Effect of Phenanthrene on the Tissue Structure of Liver and Aminotransferase Enzymes in Yellowfin Seabream (Acanthopagrus latus). IJT 2017; 11 (4) :33-41
URL: http://ijt.arakmu.ac.ir/article-1-585-en.html
1- Department of Marine Biology, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran. , m.shirmohammadi@kmsu.ac.ir
2- Department of Marine Biology, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
3- Department of Basic Sciences, University of Tabriz, Tabriz, Iran.
Abstract:   (5723 Views)

Background: Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene (Phe) represent one of the most abundant forms of organic pollutants. The aim of this study was to assess changes in plasma levels of aminotransferase enzymes, total protein and liver tissue as biomarkers of yellowfin seabream (Acanthopagrus latus) exposed to Phe for 14 d.

Methods: The research was carried out in January 2016 at Khorramshahr University of Marine Sciences and Technology, Khorramshahr, Iran. Some 72 fish were injected with 2, 20, 40 and 70 mg/kg of Phe. Then tissue and blood samples were obtained at 1, 4, 7 and 14 d after injection.

Results: Exposure of fish to Phe resulted in a significant increase of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and decrease of total protein after 7 d of the experiment (P<0.05). The main histopathological alteration was showed in different sampling days including nucleus margination, hypertrophy, vacuolation, melanomacrophages aggregates, sinusoid dilation, degeneration and picnotic nucleus. Degree of tissue change (DTC) of liver was recorded in the Phe-exposed fish from normal range to moderate changes.

Conclusion: The studied biomarkers such as changes in concentrations of ALT, AST and total protein as well as tissue damages in liver may be served as beneficial biomarker to assess Phe toxicity in yellowfin seabream.

Full-Text [PDF 579 kb]   (1430 Downloads)    
Type of Study: Research | Subject: General

References
1. Wu RS, Pollino CA, Au DW, Zheng DW, Yuen B, Lam PK. Evaluation of biomarkers of exposure and effect in juvenile areolated grouper (Epinephelus areolatus) on food-borne exposure to benzo-a-pyrene. Eviron Toxicol Chem 2003; 22(7):68-73. [DOI:10.1002/etc.5620220720]
2. Karami A, Romano N, Hamzah H, Simpson SL, Yap CK. Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): Molecular, biochemical, and histopathological alterations. Environ Pollut 2016;212:155-65. [DOI:10.1016/j.envpol.2016.01.055]
3. Naderi M, Safahieh A, Madiseh SD, Zolgharnein H, Ghatrami ER. Induction of vitellogenin synthesis in immature male yellowfin seabream (Acanthopagrus latus) exposed to 4-nonylphenol and 17β-estradiol. Toxicol Ind Health 2015;31(3):209-20. [DOI:10.1177/0748233712469646]
4. Amrollahi Biuki N, Savari A, Mortazavi MS, Zolgharnein H, Salamat N. Liver histopathological changes in milkfish (Chanos chanos) exposed to petroleum hydrocarbon exposure. World Appl Sci J 2012;18 (9):1315-20.
5. Nahrgang J, Camus L, Gonzalez P, Goksøyr A, Christiansen JS, Hop H. PAH biomarker responses in polar cod (Boreogadus saida) exposed to benzo(a)pyrene. Aquat Toxicol 2009;94:309-19. [DOI:10.1016/j.aquatox.2009.07.017]
6. Pathiratne A, Hemachandra CK. Modulation of ethoxyresorufin O-deethylase and glutathione S-transferase activities in Nile tilapia (Oreochromis niloticus) by polycyclic aromatic hydrocarbons containing two to four rings: implications in biomonitoring aquatic pollution. Ecotoxicol 2010;19:1012-18. [DOI:10.1007/s10646-010-0482-3]
7. Phalen LJ, Köllner B, Leclair LA, Hogan NS, van den Heuvel MR. The effects of benzo[a]pyrene on leucocyte distribution and antibodyresponse in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 2014;147:121-8. [DOI:10.1016/j.aquatox.2013.12.017]
8. Vossoughi M, Moslehi P, Alemzadeh I. Some investigation on bioremediation of sediment in Persian Gulf Coast. Int J Eng 2005;18:45-53.
9. Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. Philadelphia: Elsevier; 2002.
10. Poleksic V, Mitrovic-Tutundzic V. Fish gills as a monitor of sublethal and chronic effects of pollution. In: Muller R, Lloyd R, editors. Sublethal and Chronic Effects of Pollutants on Freshwater Fish. England: Oxford, Fishing News Books; 1994. p. 339-52.
11. Camargo MMP, Martinez CBR. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotrop Ichthyol 2007:5(3):327-36. [DOI:10.1590/S1679-62252007000300013]
12. Van Dyk JC, Pieterse GM, van Vuren JH. Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 2007;66:432-40. [DOI:10.1016/j.ecoenv.2005.10.012]
13. Simonato JD, Guede CLB, Martinez CBR. Biochemical, physiological and histological changes in the neotropical fish Prochiloduslineatus exposed to diesel oil. Ecotoxicol Environ Saf 2008;69(1):112-20. [DOI:10.1016/j.ecoenv.2007.01.012]
14. Rodrigues RV, Miranda-Filho KC, Gusmão EP, Moreira CB, Romano LA, Sampaio LA. Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Sci Total Environ 2010;408:2054-59. [DOI:10.1016/j.scitotenv.2010.01.063]
15. Pacheco M, Santos MA. Biotransformation, genotoxic and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotoxicol Environm Saf 2002;53:331-47. [DOI:10.1016/S0147-6513(02)00017-9]
16. Wolf JC, Wolfe MJ. A Brief Overview of Nonneoplastic Hepatic Toxicity in Fish. Toxicol Pathol 2005;33:75–85. [DOI:10.1080/01926230590890187]
17. Vutukuru SS, Arun Prabhath N, Raghavender M, Yerramilli A. Effect of arsenic and chromium on the serum amino-transferases activity in Indian major Carp, Labeo rohita. Int J Environ Res Public Health 2007;4:224-27. [DOI:10.3390/ijerph2007030005]
18. Kori-Siakpere O, Ubogu EO. Sublethal haematological effects of zinc on the freshwater fish, Heteroclarias sp.(Osteichthyes: Clariidae). Afr J Biotechnol 2008;7:2068-73. [DOI:10.5897/AJB07.706]
19. Shirdel I, Kalbassi MR, Shokri M, Olyaei R, Sharifpour I. The response of thyroid hormones, biochemical and enzymological biomarkers to pyrene exposure in common carp (Cyprinus carpio). Ecotoxicol Environ Saf 2016;130:207-13. [DOI:10.1016/j.ecoenv.2016.03.023]
20. Sun Y, Yu H, Zhang J, Yin Y, Shi H, Wang X. Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure. Chemosphere 2006;63:1319-27. [DOI:10.1016/j.chemosphere.2005.09.032]
21. Niimi AJ, Palazzo V. Biological half-lives of eight polycyclic aromatic hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri). Water Res 1986;20 (4): 503-7. [DOI:10.1016/0043-1354(86)90200-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb