Write your message
Volume 18, Issue 2 (May 2024)                   IJT 2024, 18(2): 84-92 | Back to browse issues page

Ethics code: NIH Publication No. 85-23, amended in 1985


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohamed M. Rezk M M R, Mohammedan T F, Morsi W M, Hafez W S, Cheira M F, Negm S H et al . Effects of Tannic Acid and Daily Intraperitoneal Beryllium Injections on Adult Male Albino Rats: Distribution and Physiological Hazards in Body Organs. IJT 2024; 18 (2) :84-92
URL: http://ijt.arakmu.ac.ir/article-1-1295-en.html
1- Isotope Geology Department, Nuclear Materials Authority, Cairo, Egypt
2- Isotope Geology Department, Nuclear Materials Authority, Cairo, Egypt , mahmoud_nma@yahoo.com
Abstract:   (844 Views)
Background: Beryllium (Be) is an element used in various industries, such as nuclear and microelectronic industries. Be release into the environment raises its toxic effects and increases the likelihood of exposure to humans, which causes many hazardous side effects, such as cancer and skin allergic conditions.
Methods: This study investigated the role of tannic acid (TA) in counteracting the hazardous effects and the accumulation of Be. We made daily injections intraperitoneally into 72 adult male albino rats for 14 days. Animals were divided into four groups: control, Be, TA, and Be+TA. The animals were sacrificed at 1, 7, or 14 days into the study.
Results: The data provided evidence that Be accumulations were found in different body organs, which were ranked as follows: lung>liver>kidneys>brain>testes. Be accumulations lowered the rats’ blood glucose levels significantly. In addition, the liver function tests showed significant increases in bilirubin and transaminase enzymes in the animals. We also found significant declines in alkaline phosphatase, albumin, and proteins in these animals. Further, significant rises occurred in the kidneys’ secretions of creatinine, urea, uric acid, lipids, cholesterol, and triglycerides. The TA administration ameliorated the toxic effects of Be on all of the tested variables. The rise in malondialdehyde and the decline in glutathione levels in the kidneys and liver improved after the TA treatment.

Conclusion: The findings of this study provided evidence that TA administration effectively counteracted the toxic effects of Be administration in rats.
Full-Text [PDF 695 kb]   (152 Downloads) |   |   Full-Text (HTML)  (169 Views)  
Type of Study: Research | Subject: General

References
1. Ayuso RA, Foley NK. Metallogeny and exploration strategy for volcanic rocks hosting world class Be-UF mineralization at Spor Mountain, Utah, USA. J Geochem Explor. 2023;247:107154. [doi:10.1016/j.gexplo.2023.107154]
2. Bolan S, Wijesekara H, Tanveer M, Boschi V, Padhye LP, Wijesooriya M, et al. Beryllium contamination and its risk management in terrestrial and aquatic environmental settings. Environmental Pollution. 2023;320:121077. [doi:10.1016/j.envpol.2023.121077]
3. ZhongS, HuM, Zhang L, QinX, ZhangQ, RuX, WangL.Toxic metals and the risks of sludge from the treatment of wastewater from beryllium smelting. Chemosphere. 2023;326:138439. [doi:10.1016/j.chemosphere.2023.138439]
4. Martin-Somer A, Lamsabhi AM, Mo O, Yanez M. The importance of deformation on the strength of beryllium bonds. Computational and Theoretical Chemistry. 2012;998:74-9. [doi:10.1016/j.comptc.2012.06.009] [doi:10.1016/j.comptc.2012.06.009]
5. Zuanetti B, Ramos K, Cady C, Golder A, Meredith C, Casem D, Bolme C, editors. High strain-rate testing of brittle materials using miniature beryllium split-hopkinson pressure bars. In: Zhang, M., et al. Characterization of Minerals, Metals, and Materials. The Minerals, Metals & Materials Series. 2023:65-73. [doi:10.1007/978-3-031-22576-5_7]
6. DHHS U, Health UDo, Services H. Hazardous substances data bank (HSDB, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD. 1993. [Link]
7. Suhrhoff TJ, Rickli J, Crocket K, Bura-Nakic E, Vance D. Behavior of beryllium in the weathering environment and its delivery to the ocean. Geochimica et Cosmochimica Acta. 2019;265:48-68. [doi:10.1016/j.gca.2019.08.017]
8. Castorina R, Woodruff TJ. Assessment of potential risk levels associated with US Environmental Protection Agency reference values. Environ Health Perspect. 2003;111(10):1318-25. [Link]
9. Kutzman RS, Gimon DM, Hinz JP, TX NSA. Identification of Chemicals of Interest to the Department of Defense and US Air Force Among the US Environmental Protection Agency's Integrated Risk Information System Chemicals that are due for Reassessment of their Toxicity Values. 2010. [Link]
10. Renfew MM. NIOSH Pocket guide to chemical hazards (US Department of Health and Human Services-National Institute for Occupational Safety and Health). ACS Publications.1991. [Link]
11. Berger JL, Riskin SD. Economic and Technological Feasibility in Regulating Toxic Substances Under the Occupational Safety and Health Act. Ecology LQ. 1978;7:285. [Link]
12. El-Beshbishy HA, Hassan MH, Aly HA, Doghish AS, Alghaithy AA. Crocin "saffron" protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes. Ecotoxicol Environ Saf. 2012;83:47-54. [doi:10.1016/j.ecoenv.2012.06.003]
13. Verma A, Rakshit S, Nirala Sk, Bhadauria N. Beryllium driven hematological and serological alteration; that cured by chelation via naringenin in albino rats. Asian J Pharm Clin Res. 2019;12(9):116-9. [doi:10.22159/ajpcr.2019.v12i9.34517]
14. Gordon T, Bowser D. Beryllium: genotoxicity and carcinogenicity. Mutat Res /Fundamental & Molecular Mechanisms of Mutagenesis. 2003;533(1-2):99-105. [doi:10.1016/j.mrfmmm.2003.08.022]
15. Clayton GM, Wang Y, Crawford F, Novikov A, Wimberly BT, Kieft JS, et al. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell. 2014;158(1):132-42. [doi:10.1016/j.cell.2014.04.048]
16. Rezk MM. A neuro-comparative study between single/successive thorium dose intoxication and alginate treatment. Biol Trace Element Res. 2018;185:414-23. [doi:10.1007/s12011-018-1262-9]
17. Abdel-Rahman M, Rezk MM, Abdel Moneim AE, Ahmed-Farid OA, Essam S. Thorium exerts hazardous effects on some neurotransmitters and thyroid hormones in adult male rats. Naunyn-Schmiedeberg's Arch Pharmacol. 2020;393:167-76. [doi:10.1007/s00210-019-01718-y]
18. Abdel-Rahman M, Rezk MM, Ahmed-Farid OA, Essam S, Abdel Moneim AE. Saussurea lappa root extract ameliorates the hazards effect of thorium induced oxidative stress and neuroendocrine alterations in adult male rats. Environ Sci Pollut Res. 2020;27:13237-46. [doi:10.1007/s11356-020-07917-y]
19. Kader SMA, Bauomi AA, Abdel-Rahman M, Mohammaden TF, Rezk MM. Antioxidant potentials of (Elletaria cardamomum) cardamom against uranium hazards. Int J Basic Life Sci. 2015;3(4):164-81. [Link]
20. Abdel-Rahman M, Bauomi A, Abdel-Kader S, Mohammaden T, Rezk MM. Effect of cardamom (Elletaria cardamomum) on brain ions and acetylcholine esterase enzyme of albino rats ingested uranium. Int J Basic Life Sci. 2015;3(3):122-38. [Link]
21. Abdel-Rahman M, Rezk MM, Kader SA. The role of cardamom on the hazardous effects of depleted uranium in cerebellum and midbrain of albino rats. Toxicol Environ Health Sci. 2017;9:64-73. [doi:10.1007/s13530-017-0305-5]
22. Chen P-Y, Liao Y-H, Huang W-T, Lin Y-C, Hou Y-T. Effects of tannic acid on liver function in a small hepatocyte-based detachable microfluidic platform. Biochem Engin Journal. 2023;190:108757. [doi:10.1016/j.bej.2022.108757]
23. Chen S-C, Chung K-T. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds. Food Chem Toxicol. 2000;38(1):1-5. [doi:10.1016/S0278-6915(99)00114-3]
24. Wei C, Wang C-L, Hao Y-J, Zhang X, Long J-S, Lang W-Z. Nature-inspired construction of poly (vinylidene fluoride) membranes through the coordination coating of tannic acid with copper ions for oil-in-water emulsions separation. Journal of Membrane Science. 2023;671:121367. [doi:10.1016/j.memsci.2023.121367]
25. Isenburg JC, Karamchandani NV, Simionescu DT, Vyavahare NR. Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials. 2006;27(19):3645-51. [doi:10.1016/j.biomaterials.2006.02.016 [doi:10.1016/j.biomaterials.2006.02.016]
26. Wu L, Chu C, Chung J, Chen C-H, Hsu L-S, Liu J-K, Chen S. Effects of tannic acid and its related compounds on food mutagens or hydrogen peroxide-induced DNA strands breaks in human lymphocytes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2004;556(1-2):75-82. [doi:10.1016/j.mrfmmm.2004.07.004]
27. Lopes GK, Schulman HM, Hermes-Lima M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochimica et Biophysica Acta General Subjects. 1999;1472(1-2):142-52. [doi:10.1016/S0304-4165(99)00117-8]
28. Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan LA, et al. Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol. 2007;76:47-59. [doi:10.1007/s00253-007-1000-2]
29. Andrade Jr RG, Dalvi LT, Silva Jr JMC, Lopes GK, Alonso A, Hermes-Lima M. The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Archives of Biochemistry and Biophysics. 2005;437(1):1-9. [doi:10.1016/j.abb.2005.02.016]
30. Bance R, Teel R. Effect of tannic acid on rat liver S9 mediated mutagenesis, metabolism and DNA binding of benzo [a] pyrene. Cancer Lett. 1989;47(1-2):37-44. [doi:10.1016/0304-3835(89)90174-2]
31. Khan W, Wang Z, Athar M, Bickers D, Mukhtar H. Inhibition of the skin tumorigenicity of (±)-7β, 8α-dihydroxy-9α, 10α-epoxy-7, 8, 9, 10-tetrahydrobenzo [a] pyrene by tannic acid, green tea polyphenols and quercetin in Sencar mice. Cancer Lett. 1988;42(1-2):7-12. [doi:10.1016/0304-3835(88)90232-7]
32. Mahmood H, Asif M, Khalid SH, Khan IU, Chauhdary Z, Razzaq FA, et al. Design of a multifunctional carrageenan-tannic acid wound dressing co-loaded with simvastatin and geranium oil. J Drug Delivery Sci Technol. 2023;79:104080. [doi:10.1016/j.jddst.2022.104080]
33. Cen D, Zheng Q, Zheng B, Zhou R, Xiao X, Zhang T, et al. A Near‐Infrared Light‐Responsive ROS Cascade Nanoplatform for Synergistic Therapy Potentiating Antitumor Immune Responses. Adv Funct Mater. 2023;33(9):2211402. [doi:10.1002/adfm.202211402]
34. FAO. Report of the Third Session of the Working Party on Pollution and Fisheries. Food Administration Organizationn'Committee for Inland Fisheries of Africa .1992. [Link]
35. Cicik B, Engin K. The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758). Turkish Journal of Veterinary & Animal Sciences. 2005;29(1):113-17. [Link]
36. Fouad HK, Atrees MS, Badawy WI. Development of spectrophotometric determination of beryllium in beryl minerals using chrome Azurol S. Arab J Chem .2016;9:S235-S9. [doi:10.1016/j.arabjc.2011.03.012]
37. Asatoor AM, King EJ. Simplified colorimetric blood sugar method. Biochem J. 1954;56(325th Meeting):xliv. [Link]
38. Bais R, Philcox M. Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC Method for Lactate Dehydrogenase (l-Lactate: NAD+Oxidoreductase, EC 1.1.1.27). Intl Federation Clin Chem. Eur J Clin Chem Clin Biochem. 1994;32(8):639-55. [pmid:7819436]
39. Crofton PM. Biochemistry of alkaline phosphatase isoenzymes. Crit Rev Clin Lab Sci. 1982;16(3):161-94. [doi:10.3109/10408368209107027]
40. Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, et al. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Clin Chem. 2023;69(8): 808-68. [doi:10.1093/clinchem/hvad080]
41. Simonian MH. Spectrophotometric determination of protein concentration. Curr Protoc Cell Biol. 2002; 15(1), A-3B. [doi:10.1002/0471142913.fab0103s04]
42. Larpent L, Verger C. The need for using an enzymatic colorimetric assay in creatinine determination of peritoneal dialysis solutions. Perit Dial Int. 1990;10(1):89-92. [doi:10.1177/089686089001000122]
43. Wang X, Li F, Cai Z, Liu K, Li J, Zhang B, He J. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Anal Bioanal Chem. 2018;410(10):2647-55. [doi:10.1007/s00216-018-0939-4]
44. Moghadasian MH, Frohlich JJ, Scudamore CH. Specificity of the commonly used enzymatic assay for plasma cholesterol determination. J Clin Pathol. 2002;55(11):859-61. [doi:10.1136/jcp.55.11.859] [pmid: 12401826]
45. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analyt Biochem. 1979;95(2):351-58. [doi:10.1016/0003-2697(79)90738-3]
46. Ellman GL. Tissue Sulfhydryl Groups. Archives of Biochemistry and Biophysics. 2022;726:109245. [doi:10.1016/0003-9861(59)90090-6]
47. Sutton M, Burastero SR. Beryllium chemical speciation in elemental human biological fluids. Chem Res Toxicol. 2003;16(9):1145-54. [doi:10.1021/tx0256477]
48. Bruce R, Ingerman L, Jarabek A. Toxicological Review of Beryllium and Compounds. Environmental Protection Agency.1998. [Link]
49. Drobyshev E, Kybarskaya L, Dagaev S, Solovyev N. New insight in beryllium toxicity excluding exposure to beryllium-containing dust: accumulation patterns, target organs, and elimination. Arch Toxicol. 2019;93(4):859-69. [doi:10.1007/s00204-019-02432-7]
50. Sharma P, Shah A, Shukla S. Protective effect of Tiron (4,5-dihydroxybenzene-1,3-disulfonic acid disodium salt) against beryllium-induced maternal and fetal toxicity in rats. Arch Toxicol. 2002;76(8):442-48. [doi:10.1007/s00204-002-0356-4]
51. Üçer A, Uyanik A, Aygün ŞF. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep Purif Technol. 2006;47(3):113-8. [doi:10.1016/j.seppur.2005.06.012]
52. Ganai SA, Mir MA, Shah BA, Qadri RA, Wani AH, Rajamanikandan S, et al. Evaluation of free radical quenching, anti-inflammatory activity together with anticancer potential of Lychnis coronaria and characterization of novel molecules from its extract through high resolution-liquid chromatography mass spectrometry coupled to structural biochemistry approach. J Biomol Struct Dyn. 2023:41(22) 13041-055. [doi:10.1080/07391102.2023.2173296]
53. Nirala SK, Bhadauria M, Shukla S, Agrawal OP, Mathur A, Li PQ, et al. Pharmacological intervention of tiferron and propolis to alleviate beryllium-induced hepatorenal toxicity. Fundam Clin Pharmacol. 2008;22(4):403-15. [doi:10.1111/j.1472-8206.2008.00603.x]
54. Teixeira CFP, Yasaka WJ, Silva LF, Oshiro TT, Oga S. Inhibitory effects of beryllium chloride on rat liver microsomal enzymes. Toxicology. 1990;61(3):293-301. [doi:10.1016/0300-483X(90)90179-K. [doiI:10.1016/0300-483X(90)90179-K]
55. Krajka-Kuźniak V, Baer-Dubowska W. The effects of tannic acid on cytochrome P450 and phase II enzymes in mouse liver and kidney.Toxicol Lett. 2003;143(2):209-16. [doi:10.1016/S0378-4274(03)00177-2]
56. Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J Nutrition. 2004;134(12):3431S-40S. [doi:10.1093/jn/134.12.3431S]
57. Hiller J, Naglav-Hansen D, Drexler H, Göen T. Human urinary and blood toxicokinetics of beryllium after accidental exposure. J Trace Elem Med Biol. 2023;76:127125. [doi:10.1016/j.jtemb.2023.127125]
58. Hall JE and HallME. Guyton and Hall textbook of medical physiology e-Book. 2020: Elsevier Health Sciences. [Link]
59. Kuppusamy UR, Das NP. Protective effects of tannic acid and related natural compounds on Crotalus adamenteus subcutaneous poisoning in mice. Pharmacol Toxicol.1993;72(4-5):290-95. [doi:10.1111/j.1600-0773.1993.tb01652.x]
60. Sekizawa J. Concise International Chemical Assessment Document (CICAD): a new chemical safety series in IPCS, internationalizing national reviews. Eisei Shikenjo Hokoku. 1996;114:89-94. [pmid: 9037872]
61. Nirala SK, Bhadauria M, Mathur R, Mathur A. Amelioration of beryllium induced alterations in hepatorenal biochemistry and ultramorphology by co-administration of tiferron and adjuvants. J Biomed Sci.2007;14(3):331-45. [doi:10.1007/s11373-007-9147-5]
62. Faraci WS, Zorn SH, Bakker AV, Jackson E, Pratt K. Beryllium competitively inhibits brain myo-inositol monophosphatase, but unlike lithium does not enhance agonist-induced inositol phosphate accumulation. Biochem J.1993;291(2):369-74. [doi:10.1042/bj2910369]
63. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48(8):3396-402. [doi:10.1021/jf9913458]
64. Bodrenko I, Satta A, Caddeo C, Cozzolino G, Milenkovic S, Ceccarelli M, et al. Promising perspectives on the use of fullerenes as efficient containers for beryllium atoms. Adv Funct Mater. 2023;33(42):2303786. [doi:10.1002/adfm.202303786]
65. Yugarani T, Tan BK, Das NP. The effects of tannic acid on serum lipid parameters and tissue lipid peroxides in the spontaneously hypertensive and Wistar Kyoto rats. Planta Med. 1993;59(1):28-31. [doi:10.1055/s-2006-959598]
66. Fukuda N, Yoshitama A, Sugita S, Fujita M, Murakami S. Dietary taurine reduces hepatic secretion of cholesteryl ester and enhances fatty acid oxidation in rats fed a high-cholesterol diet. J Nutr Sci Vitaminol (Tokyo). 2011;57(2):144-49. [doi:10.3177/jnsv.57.144]
67. Mathur S, Flora SJ, Mathur R, Das Gupta S. Mobilization and distribution of beryllium over the course of chelation therapy with some polyaminocarboxylic acids in the rat. Hum Exp Toxicol. 1993;12(1):19-24. [doi:10.1177/096032719301200104]
68. Witschi HP, Aldridge WN. Uptake, distribution and binding of beryllium to organelles of the rat liver cell. Biochem J. 1968;106(4):811-20. [doi:10.1042%2Fbj1060811] [pmid: 5637364]
69. Parker VH, Stevens C. Binding of beryllium to nuclear acidic proteins. Chem Biol Interact. 1979;26(2):167-77. [doi:10.1016/0009-2797(79)90020-6] [pmid: 455565]
70. Ward E, Okun A, Ruder A, Fingerhut M, Steenland K. A mortality study of workers at seven beryllium processing plants. Am J Ind Med. 1992;22(6):885-904. [doi:10.1002/ajim.4700220610] [pmid: 1463033]
71. Kuschner M. The carcinogenicity of beryllium. Environ Health Perspect. 1981;40:101-5. [doi: 10.1289/ehp.8140101] [pmid: 7023926]
72. Xu J, Chen TY, Tai CH, Hsu SH. Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson's disease. Biomater Res. 2023;27(1):8. [doi: 10.1186/s40824-023-00347-0] [pmid: 36755333]
73. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab J Chem. 2010;3(1):43-53. . [doi:10.1016/j.arabjc.2009.12.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb