[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 10, Issue 4 (July-August 2016) ::
IJT 2016, 10(4): 25-32 Back to browse issues page
Biochemical Alteration Induced by Cadmium and Lead in Common Carp via an Experimental Food Chain
Mohammad Mohiseni *, SeiedehSara Asayesh , Saeedeh Shafiee Bazarnoie , Fatemeh Mohseni , Nahid Moradi , Mahbubeh Matouri , Nurieh Mirzaee
Department of Fisheries, Behbahan KhatamAlanbia University of Technology, Behbahan, Iran. , mohiseni@ut.ac.ir
Abstract:   (1747 Views)

Background: Evaluation on the toxicity of two mainly contaminant heavy metals, cadmium (Cd) and lead (Pb) through the food chain was the aim of this study.

Methods: A total number of 270 healthy common carp (4±1.14 g) in April, 2015 transported to the Khatam Alanbia University of Technology, Behbahan, Iran. Fishes were divided into three groups and transferred to the 20 L aquaria each containing 30 juveniles. The first group (control) fed by metal-free Artemia fransiscan anauplii throughout the experiment. The second and third groups were feeding by Cd and Pb (1.5 mg/L free ion) contaminated nauplia, respectively. The experimental study was carried out for three weeks and sampling was done in 4th, 7th, 14th and 21st days. Finally, the alterations in plasma biochemical responses were determined.

Results: Alanine aminotransferase and aspartate aminotransferase activities increased in response to feeding Pb-contaminated nauplia. Creatine phosphokinase activity showed significant increase in fourth day about both Cd and Pb and at the end of experiment only in Cd treatment (P<0.05). Cholesterol and triglyceride were increased significantly only for Pb (P<0.05). Plasma glucose and creatinine levels increased by both heavy metals compared to the control but glucose just remained high only for Pb at the end of the experiment. Total protein, albumin and globulin were significantly declined in both metal contaminated groups (P<0.05).

Conclusion: It seems Pb had a greater toxicity than Cd through the food chain and it may be due to its more trophic transfer than Cd.

Keywords: Biochemical Alteration, Common Carp, Food Chain, Heavy Metal
Full-Text [PDF 377 kb]   (969 Downloads)    
Type of Study: Research | Subject: Special
1. Mohiseni M, Farhangi M, Agh N, Mirvaghefi A, Talebi KH, Mohiseni A. The effect of different levels of cadmium and copper on survival rate, bioconcentration and bioconcentration factor of these metals in Artemi aurmiana nauplii. International workshop/symposium on distribution and biology of Artemia. Urmia. Iran. 2009.
2. Javed M, Usmani N. Accumulation of heavy metals in fishes: a human health concern. Int J Env Sci 2011;2:659-64.
3. Sobha K, Poornima A, Harini P, Veeraiah K. A study on biochemical changes in the fresh water fish, Catla catla (Hamilton) exposed to the heavy metal toxicant cadmium chloride. Kathm Univ J Sci Eng Tech 2007;3(2):1-11.
4. Vinodhini R, Narayanan M. Toxic Heavy Metals on the Hematological Parameters in Common Carp (Cyprinu scarpio L.). Iran J Environ Health Sci Eng 2009;6(1):23-8.
5. Devi M, Thomas, DA, Barber J.T, Fingerman M, Accumulation and physiological and biochemical effects of cadmium in a simple aquatic food chain. Ecoto Environ Safe 1996;33:38-43. [DOI:10.1006/eesa.1996.0004]
6. Olsson P, Kling P, Hogstrand C. Mechanisms of heavy metal accumulation and toxicity in fish. In: Langston WJ, Bebianno MJ, editors. Metal Metabolism in the Aquatic Environment. Chapman & Hall, London, UK; 1998. p. 321–50. [DOI:10.1007/978-1-4757-2761-6_10]
7. McGeer JC, Szebedinszky CS, McDonald DG, Wood CM. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. II. Tissue specific metal accumulation. Aquat Toxicol 2000;50:245–56. [DOI:10.1016/S0166-445X(99)00106-X]
8. Van Campenhout K, Bervoets L, Blust R. Assimilation efficiencies of Cd and Zn in the common carp (Cyprinu scarpio): effects of metal concentration, temperature and prey type. Environ Pollut 2007; 145:905-14. [DOI:10.1016/j.envpol.2006.05.002]
9. Adeyeye EI, Akinyugha NJ, Fesobi ME, Tenabe VO. Determination of some metals in Clarias gariepinus (Cuvier and Valenciennes), Cyprinus carpio (L) and Oreochromis niloticus fishes in a polyculture freshwater pond and their evviroments. Aquaculture 1996; 47:205–14. [DOI:10.1016/S0044-8486(96)01376-2]
10. Dallas HF, Day JA, The effect of water quality variables on riverine ecosystems: a review: Water Research Commission Report No. 351–60; 1993.
11. Hodson PV, Blunt BR, Spy DJ. Chronic toxicity of water-borne and dietary lead to rainbow trout (Salmogairdneri) in Lake Ontario water. Water Res 1978;12:869–78. [DOI:10.1016/0043-1354(78)90039-8]
12. Rabitto IS, Alves Costa JRM, Silva de Assis HC, Pelletier E, Akaishi FM, Anjos A, Randi MAF, Ribeiro O. Effects of dietary Pb(II) and tributylin an neotroptical fish Hoplias malabarius: histopathological and biochemical findings. Ecotoxicol Environ Saf 2005;60:147–56. [DOI:10.1016/j.ecoenv.2004.03.002]
13. Łuszczek-Trojnar E, Drąg-Kozak E, Popek W. Lead accumulation and elimination in tissues of Prussian carp, Carassius gibelio (Bloch, 1782), after long-term dietary exposure, and depuration periods. Environ Sci Pollut R 2013;20:3122-32. [DOI:10.1007/s11356-012-1210-8]
14. Clearwater SJ, Baskin SJ, Wood CM, MacDonald DG, Gastrointestinal uptake and distribution of copper in rainbow trout. J Exp Biol 2000;203:2455–66.
15. Grosell M, McDonald M, Walsh P, Wood C. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta) II: copper accumulation, drinking rate and Na+/K+-ATPase activity in osmoregulatory tissues. Aquat Toxicol 2004; 68: 263-75. [DOI:10.1016/j.aquatox.2004.03.007]
16. Yang J, Chen HC. Effects of gallium on common carp (Cyprinus carpio): Acute test, plasma biochemistry, and eryth-Mcrocyte morphology. Chemosphere 2003;53:877–82. [DOI:10.1016/S0045-6535(03)00657-X]
17. McDonald MD, Grosell M. Maintaining osmotic balance with an aglomerular kidney. Comp Biochem Physiol 2006;143:447– 58. [DOI:10.1016/j.cbpa.2005.12.029]
18. Oner M, Atli G, Canli M, Changes in plasma biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ Toxicol Chem 2008;27(2):360-6. [DOI:10.1897/07-281R.1]
19. Altındağ A, Yiğit S. Assessment of heavy metal concentrations in the food web of lake Beyşehir, Turkey. Chemosphere 2005;60:552-6. [DOI:10.1016/j.chemosphere.2005.01.009]
20. Bahnasawy M, Khidr AA, Dheina N. Assessment of heavy metal concentrations in water, plankton, and fish of Lake Manzala. Egypt. Turk J Zool 2011;35:271-80.
21. Sorgeloos P, Lavens P, Leger Ph, Tackaert W, Versichele D. Manual for the Culture and Use of Brine Shrimp Artemia in Aquaculture. Faculty of Agriculture, University of Ghent, 319 p;1986.
22. Alam MK, Maughan, OE. The effect of malathion, diazinon, and various concentrations of zinc, copper, nickel, lead, iron, and mercury on fish. Biol Trace Elem Res 1992;34(3):225-36. [DOI:10.1007/BF02783678]
23. Ossana NA, Eissa BL, Bettina B, Salibian A. Short communication: Cadmium bioconcentration and genotoxicity in the common carp (Cyprinus carpio). Int J Environ Health 2009;3(3):302-9. [DOI:10.1504/IJENVH.2009.028596]
24. Bergmeyer HU, Horder M, Rej R. International federation of clinical chemistry (IFCC) scientific committee. J Clin Chem Clin Biochem 1985;24:481–95.
25. Moss DV, Henderson, AR. Clinical enzymology. In: Burits, CA. Ashwood, ER. editors. Textbook of clinical chemistry, 3rd. Philadelphia. W.B Saunders company. P. 617-21. 1999.
26. Wacker WE, Ulmer DD, Vallee BL. Metalloenzymes and myocardial infarction: Malic and lactic dehydrogenase activities and zinc concentrations in plasma. New Eng J Med 1956; 255(10):449-56. [DOI:10.1056/NEJM195609062551001]
27. Oliver. A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J 1955;61:116-22. [DOI:10.1042/bj0610116]
28. Abell LL, Levy BB, Brodie BB, Kendall FE. A simplified method for the estimation of total cholesterol in plasma and demonstration of its specificity. J Biol Chem 1952;195:357–66.
29. Cole TG, Klotzsch SG. McNamara J. Measurement of triglyceride concentration. In: Rifai, N., Warnick, GR. Dominiczak, MH., Handbook of lipoprotein testing. Washington. AACC Press, pp 115-26; 1997.
30. Newman DJ, Price CP. Renal function and nitrogen metabolites. In: Burits, CA. Ashwood, ER. editors. Textbook of clinical chemistry, 3rd. Philadelphia. W.B Saunders company. 1999; p, 1204.
31. Weichselbaum TE. An accurate and rapid method for the determination of proteins in small amounts of blood plasma and plasma. Am J Clin Pathol 1946;16:40–8.
32. Wotton ID, Freeman H. Microanalysis in medicinal biochemical. Churchill Livingstone, Edinburgh, London, 1974 p. 1982.
33. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and β-carotene. Food Chem Toxicol 2004; 42: 1563-71. [DOI:10.1016/j.fct.2004.05.001]
34. William JP, Nongenetic variation, genetic environmental interactions and altered gene expression. Temperature, photoperiod, diet, pH and sex-related effects. Comp Biochem Physiol 1997;117A:11–66.
35. Adham KG, Hassan IF, Taha N, Amin TH. Impact of Hazardous exposure to metals in the Nile and Delta lakes on the catfish, Clariaslazera. Environ. Monitor Assess 1999;54:107–24. [DOI:10.1023/A:1005898430980]
36. Seyit A, Nejdet G, Harun Y. Natural and experimental infections of Campylobacter cryaerophila in rainbow trout: gross pathology, bacteriology, clinical pathology and chemotherapy. Fish Path 2000;35:117–23. [DOI:10.3147/jsfp.35.117]
37. Al-Attar AM. Biochemical effects of short-term cadmium exposure on the freshwater fish, Oreochromis niloticus. J Biol Sci 2005;5: 260-5. [DOI:10.3923/jbs.2005.260.265]
38. Vutukuru SS, Prabhath NA, Raghavender M, Yerramilli A. Effect of arsenic and chromium on the plasma amino-transferases activity in Indian major carp, Labeorohita. Int J Environ Res Pub Health 2007; 4: 224-7. [DOI:10.3390/ijerph2007030005]
39. Fırat Ö, Cogun HY, Yüzereroğlu TA, Gök G, Fırat Ö, Kargin F, Kötemen Y. A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to plasma biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiolog Biochem 2011;37:657-66. [DOI:10.1007/s10695-011-9466-3]
40. Vutukuru S. Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeorohita. Int J Environ Res Pub Health 2005; 2: 456-62. [DOI:10.3390/ijerph2005030010]
41. Almeida J, Novelli E, Silva MDP, Júnior RA. Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environ Pollut 2001; 114: 169-75. [DOI:10.1016/S0269-7491(00)00221-9]
42. Huang CC, Xu Y, Briggler JT, McKee M, Nam P, Huang Y. Heavy metals, hematology, plasma chemistry, and parasites in adult hellbenders (Cryptobranchus alleganiensis). Environ Toxicol Chem 2010;29:1132-7. [DOI:10.1002/etc.148]
43. Adham KG, Ibrahim HM, Hamed SS, Saleh RA. Blood chemistry of the Nile tilapia, Oreochromis niloticus (Linnaeus, 1757) under the impact of water pollution. Aquat Eco 2002;36:549-57. [DOI:10.1023/A:1021137122046]
44. Bernet D, Schmidt H, Wahli T, Burkhardt-Holm P. Effluent from a sewage treatment works causes changes in plasma chemistry of brown trout (Salmo trutta L.). Ecotoxicol Environ Saf 2001;48:140–7. [DOI:10.1006/eesa.2000.2012]
45. Kumar A, Barthwal R. Hexavalent chromium effects on hematological indices in rats. B Environ Contam Tox 1991;46:761-8. [DOI:10.1007/BF01689965]
46. Metwally M. Effect of garlic (Allium sativum) on some heavy metal (copper and zinc) induced alteration in plasma lipid profile of Oreochromis niloticus. World J Fish Marine Sci 2009; 1: 1-6.
47. Hontela A, Daniel C, Ricard AC. Effects of acute and subacute exposures to cadmium on the interrenal and thyroid function in rainbow trout, Oncorhynchus mykiss. Aqua Toxicol 1996; 35: 171-82. [DOI:10.1016/0166-445X(96)00012-4]
48. Ricard A, Daniel C, Anderson P, Hontela A. Effects of subchronic exposure to cadmium chloride on endocrine and metabolic functions in rainbow trout Oncorhynchus mykiss. Arch Environ Con Tox 1998; 34: 377-81. [DOI:10.1007/s002449900333]
49. Levesque H, Moon T, Campbell P, Hontela A. Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aqua Toxicol 2002; 60: 257-67. [DOI:10.1016/S0166-445X(02)00012-7]
50. Yamawaki K, Hashimoto W, Fujii K, Koyama J, Ikeda Y, Ozaki H, Hemochemical changes in carp (Cyprinus carpio) exposed to low cadmium concentrations. Nippon Suisan Gakk. Bull 1986;52:459–66.
51. Kandemir S, Dogru MI, Orun I, Dogru A, Altas L, Erdogan K, Orun G, Polat N. Determination of heavy metal levels, oxidative status, biochemical and hematological parameters in Cyprinus carpio L., 1758 from Bafra (Samsun) fish lakes. J Anim Vet Adv 2010;9:617-22. [DOI:10.3923/javaa.2010.617.622]
52. Zaghloul K. Usage of zinc and calcium in inhibiting the toxic Effect of copper on the African catfish, Clarias gariepinus. J Egyptian-German Soc Zool 2001; 35: 99-119.
53. Ali A, Al‐Ogaily S, Al‐Asgah N, Gropp J. Effect of sublethal concentrations of copper on the growth performance of Oreochromis niloticus. J Appl Ichthyol 2003; 19: 183-8. [DOI:10.1046/j.1439-0426.2003.00440.x]
54. Abdel-Tawwab M, Mousaad MN, Sharafeldin KM, Ismaiel NE. Changes in growth and biochemical status of common carp, Cyprinus carpio L. exposed to water-born zinc toxicity for different periods. Int Aquat Res 2013; 5: 11-5. [DOI:10.1186/2008-6970-5-11]
55. Gopal V, Parvathy S, Balasubramanian P. Effect of heavy metals on the blood protein biochemistry of the fish Cyprinus carpio and its use as a bio-indicator of pollution stress. Environ Monit Assess 1997; 48: 117-24. [DOI:10.1023/A:1005767517819]
56. Banaee M, Haghi BN, Ibrahim ATA. Sub-lethal toxicity of chlorpyrifos on Common carp, Cyprinus carpio (Linnaeus, 1758): Biochemical response. Int J Aqu Biol 2014; 1: 281-8.
57. Ruangsomboon S, Wongrat L. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus× C. gariepinus. Aqua Toxicol 2006;78:15-20. [DOI:10.1016/j.aquatox.2006.01.015]
58. Liu X-J, Ni I-H, Wang W-X. Trophic transfer of heavy metals from freshwater zooplankton Daphnia magna to zebrafish Danio reiro. Water Res 2002; 36: 4563-9. [DOI:10.1016/S0043-1354(02)00180-X]
59. Yousafzai AM, Siraj M, Ahmad H, Chivers DP. Bioaccumulation of heavy metals in common carp: implications for human health. Pakistan J Zool 2012; 44: 489-94.
Send email to the article author

Add your comments about this article
Your username or Email:

Write the security code in the box >

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohiseni M, Asayesh S, Shafiee Bazarnoie S, Mohseni F, Moradi N, Matouri M et al . Biochemical Alteration Induced by Cadmium and Lead in Common Carp via an Experimental Food Chain. IJT. 2016; 10 (4) :25-32
URL: http://ijt.arakmu.ac.ir/article-1-471-en.html

Volume 10, Issue 4 (July-August 2016) Back to browse issues page
مجله سم شناسی و مسمومیتهای ایران Iranian Journal of Toxicology
Persian site map - English site map - Created in 0.05 seconds with 874 queries by yektaweb 3603