Write your message
Volume 10, Issue 6 (November-December 2016)                   IJT 2016, 10(6): 23-29 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahangard A, Sohrabi M, Beigmohammadi Z. Sorption of Lead (II) Ions on Activated Coconut Husk. IJT 2016; 10 (6) :23-29
URL: http://ijt.arakmu.ac.ir/article-1-489-en.html
1- M.Sc of Environmental Sciences, Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
2- M.Sc of Environmental Sciences, Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran. , sohrabi.mhs@gmail.com
Abstract:   (4323 Views)

Background: In recent years, various toxic chemicals/compounds have been widely detected at dangerous levels in drinking water in many parts of the world posing a variety of serious health risks to human beings. One of these toxic chemicals is lead, so this paper aimed to evaluate of efficiency coconut husk as cheap adsorbent for removal lead under different conditions.

Methods: In the spring of 2015, batch studies were performed in laboratory (Branch of Hamadan, Islamic Azad University,) to evaluate the influences of various experimental parameters like pH, initial concentration, adsorbent dosage, contact time and the effect of temperature on the adsorption capacity of coconut husk for removal lead from aqueous solution.

Results: Optimum conditions for Pb (II) removal were pH 6, adsorbent dosage 1g/100ml of solution and equilibrium time 120 min. The adsorption isotherm was also affected by temperature since the adsorption capacity was increased by raising the temperature from 25 to 45 °C. The equilibrium adsorption isotherm was better described by Freuindlich adsorption isotherm model.

Conclusion: It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants.  Coconut husk-based activated carbon can be a promising adsorbent for removal of Pb from aqueous solutions.

Full-Text [PDF 594 kb]   (2753 Downloads)    
Type of Study: Research | Subject: Special

References
1. Ozmen M, Can K, Arslan G, Tor A, Cengeloglu Y, Ersoz M. Adsorption of Cu (II) from aqueous solution by using modified Fe 3 O 4 magnetic nanoparticles. Desalination. 2010;254(1):162-9. [DOI:10.1016/j.desal.2009.11.043]
2. El-Shafey E. Sorption of Cd (II) and Se (IV) from aqueous solution using modified rice husk. J Hazard Mater 2007;147(1):546-55. [DOI:10.1016/j.jhazmat.2007.01.051]
3. Amuda O, Giwa A, Bello I. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J 2007;36(2):174-81. [DOI:10.1016/j.bej.2007.02.013]
4. Naiya TK, Bhattacharya AK, Mandal S, Das SK. The sorption of lead (II) ions on rice husk ash. J Hazard Mater 2009;163(2):1254-64. [DOI:10.1016/j.jhazmat.2008.07.119]
5. Chakravarti A, Chowdhury S, Chakrabarty S, Chakrabarty T, Mukherjee D. Liquid membrane multiple emulsion process of chromium (VI) separation from waste waters. Colloid Surface A 1995;103(1):59-71. [DOI:10.1016/0927-7757(95)03201-N]
6. Bhatnagar A, Vilar VJ, Botelho CM, Boaventura RA. Coconut-based biosorbents for water treatment-a review of the recent literature. Adv Colloid Interfac 2010;160(1):1-15. [DOI:10.1016/j.cis.2010.06.011]
7. Anirudhan T, Divya L, Ramachandran M. Mercury (II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J Hazard Mater 2008;157(2):620-7. [DOI:10.1016/j.jhazmat.2008.01.030]
8. Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 2010;177(1):70-80. [DOI:10.1016/j.jhazmat.2009.12.047]
9. Zhang H, Li H, Wang Z, Zhou L. Accumulation characteristics of copper and cadmium in greenhouse vegetable soils in Tongzhou District of Beijing. Procedia Environ Sci 2011;10:289-94. [DOI:10.1016/j.proenv.2011.09.047]
10. Vieira AP, Santana SA, Bezerra CW, Silva HA, de Melo JC, da Silva Filho EC, et al. Copper sorption from aqueous solutions and sugar cane spirits by chemically modified babassu coconut (Orbignya speciosa) mesocarp. Chem Eng J 2010;161(1):99-105. [DOI:10.1016/j.cej.2010.04.036]
11. Tan I, Ahmad AL, Hameed B. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J Hazard Mater 2008;154(1):337-46. [DOI:10.1016/j.jhazmat.2007.10.031]
12. Gupta VK, Jain R, Shrivastava M. Adsorptive removal of Cyanosine from wastewater using coconut husks. J Colloid Interf Sci 2010;347(2):309-14. [DOI:10.1016/j.jcis.2010.03.060]
13. Eramy-aval A, Ismail-Zadeh M, Vasei-Chaharmahali S. Heavy metal uptake from aqueous solution using ion exchange resin mineral (zeolite) and organic (carbon-activated skin from pistachios). First National Conference on Environment and Contaminants 2009.
14. Witek-Krowiak A, Szafran RG, Modelski S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination. 2011;265(1):126-34. [DOI:10.1016/j.desal.2010.07.042]
15. Weber TW, Chakravorti RK. Pore and solid diffusion models for fixed‐bed adsorbers. Aiche J 1974;20(2):228-38. [DOI:10.1002/aic.690200204]
16. Aygün A, Yenisoy-Karakaş S, Duman I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater2003;66(2):189-95. [DOI:10.1016/j.micromeso.2003.08.028]
17. Hameed B, Krishni R, Sata S. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J Hazard Mater 2009;162(1):305-11. [DOI:10.1016/j.jhazmat.2008.05.036]
18. Low K, Lee C. The removal of cationic dyes using coconut husk as an adsorbent. Pertanika. 1990;13(2):221-8.
19. Oliveira L-S, Franca A-S, Alves T-M, Rocha S-D-F. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. J Hazard Mater 2008; 155(3): 507–12. [DOI:10.1016/j.jhazmat.2007.11.093]
20. Hameed B, Ahmad A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater 2009;164(2):870-5. [DOI:10.1016/j.jhazmat.2008.08.084]
21. Han R, Zou W, Yu W, Cheng S, Wang Y, Shi J. Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves. J Hazard Mater 2007;141(1):156-62. [DOI:10.1016/j.jhazmat.2006.06.107]
22. Banat F, Al-Asheh S, Al-Makhadmeh L. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem 2003;39(2):193-202. [DOI:10.1016/S0032-9592(03)00065-7]
23. Ferrero F. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. J Hazard Mater 2007;142(1):144-52. [DOI:10.1016/j.jhazmat.2006.07.072]
24. Tamai H, Kakii T, Hirota Y, Kumamoto T, Yasuda H. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chem Mater 1996;8(2):454-62. [DOI:10.1021/cm950381t]
25. Banat F, Al-Asheh S, Al-Ahmad R, Bni-Khalid F. Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal. Bioresource Technol 2007;98(16):3017-25. [DOI:10.1016/j.biortech.2006.10.023]
26. Gürses A, Doğar Ç, Karaca S, Acikyildiz M, Bayrak R. Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye. J Hazard Mater 2006;131(1):254-9. [DOI:10.1016/j.jhazmat.2005.09.014]
27. Vadivelan V, Kumar KV. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interf Sci 2005;286(1):90-100. [DOI:10.1016/j.jcis.2005.01.007]
28. Alaya M, Hourieh M, Youssef A, El-Sejariah F. Adsorption properties of activated carbons prepared from olive stones by chemical and physical activation. Adsorpt Sci Technol 2000;18(1):27-42. [DOI:10.1260/0263617001493251]
29. Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technol 2007;98(1):14-21. [DOI:10.1016/j.biortech.2005.12.008]
30. Wu F-C, Tseng R-L. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. J Hazard Mater 2008;152(3):1256-67. [DOI:10.1016/j.jhazmat.2007.07.109]
31. Tseng R-L, Tseng S-K, Wu F-C. Preparation of high surface area carbons from Corncob with KOH etching plus CO 2 gasification for the adsorption of dyes and phenols from water. Colloid Surface 2006;279(1):69-78. [DOI:10.1016/j.colsurfa.2005.12.042]
32. Mohanty K, Naidu JT, Meikap B, Biswas M. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind Eng Chem Res 2006;45(14):5165-71. [DOI:10.1021/ie060257r]
33. Naja G, Murphy V, Volesky B. Biosorption, Metals. Wiley Encyclopedia of Industrial Biotechnology. John Wiley & Sons; 2010.
34. Chojnacka K. Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 2010;36(3):299-307. [DOI:10.1016/j.envint.2009.12.001]
35. Cheraghi M, Sobhanardakani S, Zandipak R, Lorestani B, Merrikhpour H. Removal of Pb (II) from Aqueous Solutions Using Waste Tea Leaves. Iran J Toxicol 2015;9(28): 1247-53.
36. Gheisarianfard J, Alizadedakhel A, Nazem A. Assessment of adsorption of Pb and Hg in industrial waste water using rice husk ash. The 4th National Conference & Exhibition on Environmental Engineering Tehran.2010.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb