[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 11, Issue 2 (March-April 2017) ::
IJT 2017, 11(2): 29-38 Back to browse issues page
Atrazine-Mediated Oxidative Stress Responses and Lipid Peroxidation in the Tissues of Clarias gariepinus
Olufemi David Owolabi * , James Sunday Omotosho
Department of Zoology, University of Ilorin, Ilorin, Nigeria , olulabi47@yahoo.com
Abstract:   (1097 Views)

Background: Fish have been at high risk of atrazine toxicity. Comparative atrazine toxicity on the tissues of Clarias gariepinus is scanty. Therefore, acute and chronic effects of atrazine on some biochemical parameters in Clarias gariepinus were investigated in this study.

Methods: Atrazine toxicity was determined by assessing the responses of glucose, protein, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), superoxide dismutase (SOD), acetylcholinestarase (AChE) and malondialdehyde (MDA) in blood, gill and liver of fish exposed to both acute (0.00, 28.00, 30.00, 32.00 and 34.00 µg/l) and chronic (0.00, 7.00, 7.50, 8.00 and 8.50 µg/l) concentrations for 96 h and 28 d, respectively.

Results: In acute exposure, glucose and MDA levels showed significant (P<0.05) variations in all tissues. Protein and LDH decreased in all tissues except the latter slightly increased at 32.00µg/l in blood and liver compared to control. ALT and AChE were induced in blood but inhibited in gill and liver. SOD significantly decreased in blood but increased in gill and liver. AST was activated in blood and liver but reduced in gill. In chronic exposure, glucose, protein, SOD and AChE were inhibited in all tissues, while MDA level was induced. ALT, AST, and LDH activities were induced in blood but inhibited in gill and liver except 22.90% induction noted in liver at 8.00 µg/l atrazine.

Conclusion: Exposure to varying concentrations of atrazine induced enzymatic/metabolic alterations in C. gariepinus. These alterations can be used as biomarkers of atrazine toxicity in fish.

Keywords: Atrazine, Biochemical parameters, Clarias gariepinus, Oxidative stress, Tissues
Full-Text [PDF 301 kb]   (449 Downloads)    
Type of Study: Research | Subject: General
1. Santos TG, Martinez CB. Atrazine promotes biochemical changes and DNA damage in a Neotropical fish species. Chemosphere 2012;89(9):1118-25. [DOI:10.1016/j.chemosphere.2012.05.096]
2. Blahová J, Plhalová L, Hostovský M, Divišová L, Dobšíková R, Mikulíková I, et al. Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem Toxicol 2013;61:82-5. [DOI:10.1016/j.fct.2013.02.041]
3. Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Srivastava SK. Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int J Environ Res Public Health 2010;7(8):3298-312. [DOI:10.3390/ijerph7083298]
4. Paulino M, Souza N, Fernandes M. Subchronic exposure to atrazine induces biochemical and histopathological changes in the gills of a Neotropical freshwater fish, Prochilodus lineatus. Ecotoxicol Environ Saf 2012;80:6-13. [DOI:10.1016/j.ecoenv.2012.02.001]
5. Ezemonye LI, Ogbeide OS, Tongo I, Enuneku AA, Ogbomida E. Pesticide contaminants in Clarias gariepinus and Tilapia zilli from three rivers in Edo State, Nigeria; implications for human exposure. Int J Food Contam 2015;2:1-10. [DOI:10.1186/s40550-015-0009-z]
6. Steinberg CE, Lorenz R, Spieser OH. Effects of atrazine on swimming behavior of zebrafish, Brachydanio rerio. Water Res 1995;29(3):981-5. [DOI:10.1016/0043-1354(94)00217-U]
7. Phyu YL, Warne MSJ, Lim R. Toxicity and bioavailability of atrazine and molinate to the freshwater fish (Melanotenia fluviatilis) under laboratory and simulated field conditions. Sci Total Environ 2006;356(1):86-99. [DOI:10.1016/j.scitotenv.2005.04.003]
8. Nwani C, Nagpure N, Kumar R, Kushwaha B, Kumar P, Lakra W. Mutagenic and genotoxic assessment of atrazine-based herbicide to freshwater fish Channa punctatus (Bloch) using micronucleus test and single cell gel electrophoresis. Environ Toxicol Pharmacol 2011;31(2):314-22. [DOI:10.1016/j.etap.2010.12.001]
9. Antofie M-M, Sand C, Brezeanu A, Doroftei E. Key elements related to GMOs and novel food. Ann Rom Soc Cell Biol 2010;15(1):148-54.
10. Chromcová L, Blahová J, Plhalová L, Zivna D, Stepanova S, Praskova E, et al. The effects of atrazine exposure on early life stages of common carp (Cyprinus carpio). Neuroendocrinol Lett 2013;34:95-101.
11. Dos Santos KC, Martinez CB. Genotoxic and biochemical effects of atrazine and Roundup®, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicol Environ Saf 2014;100:7-14. [DOI:10.1016/j.ecoenv.2013.11.014]
12. APHA, AWWA. Standard methods for the examination of water and wastewater. Washington, DC. 1998.
13. Reish DL, Oshida PS. Manual of methods in aquatic environment research, Part 10: short-term static bioassays: Food & Agriculture Org.; 1987.
14. Misra H, Fridovish I. Determination of the level of superoxide dismutase in whole blood. Yale Univ PressNew Haven 1972; 101. 1972;109.
15. DGKC. The standard method for analyzing lactate dehydrogenase enzyme. J Clin Chem Clin Biochem 1970; 8: 658-9.
16. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7(2):88-95. [DOI:10.1016/0006-2952(61)90145-9]
17. Dos Santos Miron D, Crestani M, Shettinger MR, Morsch VM, Baldisserotto B, Tierno MA, et al. Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen)(Heptapteridae). Ecotoxicol Environ Saf 2005;61(3):398-403. [DOI:10.1016/j.ecoenv.2004.12.019]
18. Glusczak L, Loro VL, Pretto A, Moraes BS, Raabe A, Duarte MF, et al. Acute exposure to glyphosate herbicide affects oxidative parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 2011;61(4):624-30. [DOI:10.1007/s00244-011-9652-4]
19. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10. [DOI:10.1016/S0076-6879(78)52032-6]
20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J biol Chem 1951;193(1):265-75.
21. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 1969;6(1):24-7. [DOI:10.1177/000456326900600108]
22. Jacomini AE, Avelar WEP, Martinêz AS, Bonato PS. Bioaccumulation of atrazine in freshwater bivalves Anodontites trapesialis (Lamarck, 1819) and Corbicula fluminea (Müller, 1774). Arch Environ Contam Toxicol 2006;51(3):387-91. [DOI:10.1007/s00244-005-0238-x]
23. Abdali S, Yousefi Jourdehi A, Kazemi R, Yazdani MA. Effects of Atrazine (Herbicide) on Blood Biochemical Indices of Grass Carp (Ctenopharhyngoden idella). J Persian Gulf 2011;2(5):51-6.
24. Banaee M, Sureda A, Zohiery F, Hagi BN, Garanzini DS. Alterations in biochemical parameters of the freshwater fish, Alburnus mossulensis, exposed to sub-lethal concentrations of Fenpropathrin. Int J Aquat Biol 2014;2(2):58-68.
25. Blahova J, Modra H, Sevcikova M, Marsalek P, Zelnickova L, Skoric M, et al. Evaluation of biochemical, haematological, and histopathological responses and recovery ability of common carp (Cyprinus carpio L.) after acute exposure to atrazine herbicide. BioMed Res Int 2014;2014.
26. Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, Fischer B, et al. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol Cell Endocrinol 2012;355(2):231-9. [DOI:10.1016/j.mce.2011.10.021]
27. Rao JV. Sublethal effects of an organophosphorus insecticide (RPR-II) on biochemical parameters of tilapia, Oreochromis mossambicus. Comp Biochem Physiol Part C: Toxicol Pharmacol 2006;143(4):492-8. [DOI:10.1016/j.cbpc.2006.05.001]
28. Lushchak V, Kubrak OI, Storey JM, Storey KB, Lushchak VI. Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 2009;76(7):932-7. [DOI:10.1016/j.chemosphere.2009.04.045]
29. Modesto KA, Martinez CB. Effects of Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 2010;81(6):781-7. [DOI:10.1016/j.chemosphere.2010.07.005]
30. Fridovich I. Superoxide dismutases. Annu Rev Biochem 1975;44(1):147-59. [DOI:10.1146/annurev.bi.44.070175.001051]
31. Shen H-M, Liu Z-g. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biol Med 2006;40(6):928-39. [DOI:10.1016/j.freeradbiomed.2005.10.056]
32. Moraes BS, Loro VL, Glusczak L, Pretto A, Menezes C, Marchezan E, et al. Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere 2007;68(8):1597-601. [DOI:10.1016/j.chemosphere.2007.03.006]
33. Da Fonseca MB, Glusczak L, Moraes BS, de Menezes CC, Pretto A, Tierno MA, et al. The 2, 4-D herbicide effects on acetylcholinesterase activity and metabolic parameters of piava freshwater fish (Leporinus obtusidens). Ecotoxicol Environ Saf 2008;69(3):416-20. [DOI:10.1016/j.ecoenv.2007.08.006]
Send email to the article author

Add your comments about this article
Your username or Email:

Write the security code in the box >

XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Owolabi O D, Omotosho J S. Atrazine-Mediated Oxidative Stress Responses and Lipid Peroxidation in the Tissues of Clarias gariepinus . IJT. 2017; 11 (2) :29-38
URL: http://ijt.arakmu.ac.ir/article-1-543-en.html

Volume 11, Issue 2 (March-April 2017) Back to browse issues page
مجله سم شناسی و مسمومیتهای ایران Iranian Journal of Toxicology
Persian site map - English site map - Created in 0.05 seconds with 837 queries by yektaweb 3619