Write your message
Volume 10, Issue 4 (July-August 2016)                   IJT 2016, 10(4): 1-8 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Astereki S, Kamarehie B, Jafari A. 2-Chlorophenol Removal of Aqueous Solution Using Advanced Oxidation Processes Resulting from Iron/ Persulfate and Ultra Violet/ Persulfate. IJT 2016; 10 (4) :1-8
URL: http://ijt.arakmu.ac.ir/article-1-486-en.html
1- Department of Environment Health, Lorestan University of Medical Sciences, Khoramabad, Iran.
2- Department of Environment Health, Lorestan University of Medical Sciences, Khoramabad, Iran. , b.kamarehie@gmail.com
Abstract:   (6073 Views)

Background: Advanced oxidation processes are used to remove toxic aromatic compounds with low biodegradability, such as 2-chlorophenol. This study investigates the use of Sulfate (SO4-) and persulfate (S2O82-) radicals, as one of the advanced oxidation methods, to remove 2- chlorophenol from aquatic solutions.

Materials and Methods: This experimental and pilot-scale study was carried out using two chemical batch reactors one of the reactors equipped with UV lamps and the other was on the hot plate. In Iron/ Persulfate (Fe/S2O82- ) and Ultra violet/ Persulfate (UV/S2O82- ) processes different parameters were investigated.

Results: The results show that iron, UV, the initial pH of the solution, persulfate concentration have considerable effects on the elimination of 2-chlorophenol in both processes. In both processes, the maximum elimination occurred in acidic conditions. The elimination efficiency increased by increasing the concentration of 2-chlorophenol and UV intensity, and also by decreasing the concentration of persulfate and iron. Accordingly, in Iron/ persulfate and Ultra violet/ persulfate processes 2-chlorophenol was eliminated with 99.96% and 99.58% efficiencies, respectively.

Conclusion: Sulfate radicals which are produced from activated persulfate ions with hot-Fe ion and UV radiation have significant impact on the removal of 2-chlorophenol. Therefore, the processes of Fe/S2O82- and UV/S2O82- can be regarded as good choices for industrial wastewater treatment plants operators in the future.

Full-Text [PDF 497 kb]   (2228 Downloads)    
Type of Study: Applicable | Subject: Special

1. Deng J, Shao Y,Gao N,Deng Y,Tan C, Zhou S. Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water. Int J Environ Sci Technol 2014;11:881–90. [DOI:10.1007/s13762-013-0284-2]
2. Hamad BK, Noor AM, Rahim AA. Removal of 4-Chloro-2-Methoxyphenol from Aqueous Solution by Adsorption to Oil Palm Shell Activated Carbon Activated with K2CO3. J Phys Sci 2011;11:39–55.
3. Buddhika G, Naresh S, Peter S. Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron. Environ Eng Res 2011;16(4):187-203. [DOI:10.4491/eer.2011.16.4.187]
4. Zhao J, Zhang Y, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep Puri Technol 2010;71(3):302–7. [DOI:10.1016/j.seppur.2009.12.010]
5. Maria G, Armah A, Dionysios D. Degradation of microcytic- LR using sulfate radicals generated through photolysis, thrombolysis and transfer mechanisms. Appl Catal B-Environ 2010;96(3-4):290–8. [DOI:10.1016/j.apcatb.2010.02.013]
6. Kamali H, Ghaziaskar HS. Pressurized hot water extraction of benzoic acid and phthalic anhydride from petrochemical wastes using a modified supercritical fluid extractor and a central composite design for optimization. J Supercrit Fluids 2010;54:16–21. [DOI:10.1016/j.supflu.2010.04.002]
7. Sun H, Wang S, Ming Ang H, Moses O, Li Q. Halogen element modified titanium dioxide for visible light photocatalysis. Chem Eng J 2010;162(2):437–47. [DOI:10.1016/j.cej.2010.05.069]
8. Rokhna EV, Repo E, Virkutyte J. Comparative kinetic analysis of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol. Ultrason Sonochem 2010;17(3):541–6. [DOI:10.1016/j.ultsonch.2009.10.011]
9. Sahidou B, Pellizzari F, Leitner N. Influence of persulfate ions on the removal of phenol in aqueous solution using electron beam irradiation. J Hazard Mater 2011; 185(2-3):844-51. [DOI:10.1016/j.jhazmat.2010.09.097]
10. Daneshvar N, Khataee A, Deraji MS. Rasoulifard M, et al. Removal of acid red 14 from contaminated water using UV/S2O2-advanced oxidation process. Water Was 2011;3:112-8.
11. Gayathri P, Praveena Juliya Dorathi R, Palanivelu K. Sonochemical degradation of textile dyes in aqueous solution using sulfate radicals activated by immobilized cobalt ions. Ulterason Sonochem 2010;17(3):566–71. [DOI:10.1016/j.ultsonch.2009.11.019]
12. Karunakaran C, Anilkumar P, Manikandan G, Gomathisankar P. Solar powered potentially induced TiO2, ZnO and SnO2-catalyzed iodine generation, Sol Energ Mat Sol C 2010;94(5):900–6. [DOI:10.1016/j.solmat.2010.01.015]
13. Yang S, Wang P, Yang X, Shan L, Zhang W, Shao X, Niu R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J Hazard Mater 2010;179(1-3):552–8. [DOI:10.1016/j.jhazmat.2010.03.039]
14. Pradeep R,Wang S, Sun H, Ang HM, Tade MO. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl Catal B-Environ 2010;100(3-4):529–34. [DOI:10.1016/j.apcatb.2010.09.006]
15. Shukla P, Fatimah I, Wang SB, Ang HM, Tade MO. Photocatalytic generation of sulfate and hydroxyl radicals using zinc oxide under low-power UV to oxidase phenolic contaminants in wastewater. Catal Today 2010;157(1-):410–4.
16. Muhammad S, Saputra E, Sun H, Ang HM, Tade MO. Shaobin Wan. Removal of Phenol Using Sulfate Radicals Activated by Natural Zeolite-Supported Cobalt Catalysts. Water Air Soil Pollut 2013;224:1721. [DOI:10.1007/s11270-013-1721-z]
17. Hanci TO, Alaton LA. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem Eng J 2013;224:10-6. [DOI:10.1016/j.cej.2012.11.007]
18. Azimiyan E, Kadkhodaei A. Cleansing oil contaminants from soil using advanced oxidation method Combined Fenton and sulfate radical. Ecology 1993;40:277-88.
19. Rao YF, Qu L, Yang H, Chu W. Degradation of carbamazepine by Fe (II)-activated persulfate process. J Hazard Mater 2014; 268:23-32. [DOI:10.1016/j.jhazmat.2014.01.010]
20. Peternel I, Grcic N, Koprivanac N. Degradation of reactive azo dye by UV/peroxodisulfate system: an experimental design approach. Reac Kinet Mech Cat 2010;100:33–44. [DOI:10.1007/s11144-010-0174-2]
21. Romero A, Santos A, Vicente F, Gonzalez C. Diuron abatement using activated persulfate: Effect of pH, Fe (II) and oxidant dosage. Chem Eng J 2010;162(1):257-65. [DOI:10.1016/j.cej.2010.05.044]
22. Aleboyeh A, Daneshvar N, Kasiri MB. Optimization of C I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem Eng Proc 2008;47(5):827-32. [DOI:10.1016/j.cep.2007.01.033]
23. Su S, Guo W , Yi C, Leng Y, Ma Z. Degradation of amoxicillin in aqueous solution using sulfate radicals under ultrasound irradiation. Ultrason Sonochem 2012;19(3):469–74. [DOI:10.1016/j.ultsonch.2011.10.005]
24. Muhammad S, Saputra E, Sun H, Izidoro JC, Fungaro DA, Ang HM, et al. Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. RSC Adv 2012;2: 5645-50. [DOI:10.1039/c2ra20346d]
25. Sun H, Feng X, Wang S, Ang HM, Tade MO. Combination of adsorption, photochemical and photo catalytic degradation of phenol solution over supported zinc oxide: Effects of support and sulfate oxidant. Chem Eng J 2011;170(1):270-7. [DOI:10.1016/j.cej.2011.03.059]
26. Karimi B, Rajaei MS, Habibi M, Esvand M, Abdollahy M, Effect of UV/H2O2 advanced oxidation processes for the removal of naphthalene from the water solution. AMUJ 2013;9:78.
27. Shukla P, Wang S, Singh K, Ang HM, Tade MO. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulfate. Appl Cata B: Environ 2010;99(1):163-9. [DOI:10.1016/j.apcatb.2010.06.013]
28. Khataee AR. Application of central composite design for the optimization of photo destruction of a textile dye using UV/S2O82- process. PJCT 2009;11(4):38–45. [DOI:10.2478/v10026-009-0041-y]
29. Zhao D, Liao X , Yan X, Huling SG, Chai T, Tao H. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 2013;255:228–35. [DOI:10.1016/j.jhazmat.2013.03.056]
30. Mantzavinos D, kassinos D, parsons SA. Applications of advanced oxidation processes in wastewater treatment. Water Res 2009;43(16):3901-9. [DOI:10.1016/j.watres.2009.08.024]
31. Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 2009;151(1-3):10-8. [DOI:10.1016/j.cej.2009.02.026]
32. Kasiri MB, Aleboyeh H, Aleboyeh A. Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks. Environ Sci Technol 2008;42 (21):7970–5. [DOI:10.1021/es801372q]
33. American Public Health Association, American Water Works Association, Water Environmental Federation. Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association;2012.
34. Pereira VJ, Weinberg HS, Linden KG, Singer PC. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environ Sci Technol. 2007;41(5):1682-8. [DOI:10.1021/es061491b]
35. Kim I, Tanaka H. Photo degradation characteristics of PPCPs in water with UV treatment. Environ Inter 2009; 35(5):793–802. [DOI:10.1016/j.envint.2009.01.003]
36. Anotaia J, Lu MC, Chewpreecha P. Kinetics of aniline degradation by Fenton and electro-Fenton processes. Water Res 2006;40(9):1841–7. [DOI:10.1016/j.watres.2006.02.033]
37. Kang SF, Yen HY, Liao CH, Ya YC. Decolonization and Mineralization of Textile Effluent by H2O2/Ultraviolet Processes. Environ Eng Sci 2010;27(4):357-63. [DOI:10.1089/ees.2009.0378]
38. Idil AA, Tugba OH, Zeynep K. H2O2/UV-C Treatment of the Economically Important Naphthalene Sulfonate J-Acid: Process Optimization, Kinetic Evaluation and Activated Sludge Inhibition. J Adv Oxid Techn 2010; 3(1): 27-35.
39. Asgari Gh, chavoshani A, Rahmani AR. Chavoshi A. Removal of Pentachlorophenol Using Microwave Assisted Persulfate from Synthetic Wastewater. Water WW 2013;55(3):29-37.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb