Volume 11, Issue 1 (January-Fabruary 2017)                   IJT 2017, 11(1): 43-47 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Molla Ali Akbari S, Rabbani M, Sharifzadeh M, Hosseini-Sharifabad A. Effects of Maternal Alpha Methyldopa Administration on Memory of Rat Offspring during Growing Age. IJT. 2017; 11 (1) :43-47
URL: http://ijt.arakmu.ac.ir/article-1-528-en.html
Department of Pharmacology and Toxicology, Isfahan University of Medical Sciences, Isfahan, Iran. , hosseini_a@pharm.mui.ac.ir
Abstract:   (967 Views)

Background: Alpha Methyldopa (AMD) is a well-known treatment for the pregnancy induced hypertension and commonly used in several countries. Indeed the possible effect of AMD on the behavioral activities of offspring, whom are exposed during fetus period, has not been studied. The present study evaluated the possible effect of maternal administration of AMD on the rat offspring memory in the growing age.

Methods: This study was carried out in Isfahan Faculty Of Pharmacy in 2015. Pregnant wistar rats were injected 400 mg/kg AMD or saline every day from 14th to 21st pregnancy period, respective to their group (n=8). The spatial memory of male offspring (n=9) was evaluated one, two and three month after the birth in the object recognition task. Also two groups of adult animals (n=7) were daily administered 400 mg/kg AMD or saline one week prior to the memory evaluation. The discrimination (d2), recognition (R) and frequencies of exploration of new object (FB) in the T2 trials are used as the memory indicating factors.

Results: Daily single dose of 400 mg/kg AMD to the mothers one week prior to the delivery significantly decreased the d2 index, R index and FB in two and three months offspring rats compare to the their respective control groups.

Conclusion: The newborn rats exposed maternally to the AMD during the fetus period show cognitive impairments in the growing age. Indeed the rate of memory enhancement follows a slow pattern compare to the control offspring rats.

Full-Text [PDF 234 kb]   (588 Downloads)    
Type of Study: Research | Subject: Special

1. Csonka D, Zupkó I, Minorics R, Márki Á, Csík G, Falkay G. The effects of α-methyldopa on myometrial noradrenaline release and myometrial contractility in rat. Acta Obstet Gynecol Scand 2007;86(8):986-94. [DOI:10.1080/00016340701463830]
2. Podjarny E, Benchetrit S, Katz B, Green J, Bernheim J. Effect of methyldopa on renal function in rats with L-NAME-induced hypertension in pregnancy. Nephron 2001;88(4):354-9. [DOI:10.1159/000046020]
3. London ML, Olds SB, Ladewig PW, Ladewig PA, Davidson M. Clinical Handbook for Maternal Newborn Nursing and Women's Health Care: Prentice Hall; 2004.
4. Van Zwieten P, Thoolen M, Timmermans PB. The hypotensive activity and side effects of methyldopa, clonidine, and guanfacine. Hypertens 1984;6(5 Pt 2):28-33. [DOI:10.1161/01.HYP.6.5_Pt_2.II28]
5. Wolf WA, Bobik A. α-Methyldopa metabolism in central serotonergic nerve terminals: effects on serotonin levels, synthesis and release. Eur J Pharmacol 1989;163(1):43-53. [DOI:10.1016/0014-2999(89)90393-2]
6. Hess S, Connamacher R, Ozaki M, Udenfriend S. The effects of α-methyl-dopa and α-methyl-meta-tyrosine on the metabolism of norepinephrine and serotonin in vivo. J Pharmacol Exp Ther 1961;134(2):129-38.
7. Conway E, Jarrott B, Louis W. Effect of α-methyldopa on dopaminergic transmission in the corpus striatum. Neuropharmacology 1978;17(6):355-61. [DOI:10.1016/0028-3908(78)90006-0]
8. Imaizumi R, Oka M, Ohuchi T. Mechanism of the Antihypertensive Effect of alpha-Methyldopa. Nature 1964;203:982-3. [DOI:10.1038/203982a0]
9. González-Burgos I, Feria-Velasco A. Serotonin/dopamine interaction in memory formation. Prog Brain Res 2008;172:603-23. [DOI:10.1016/S0079-6123(08)00928-X]
10. Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AF. A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in the prefrontal cortex. Biol Psychiatry 1999;46(9):1266-74. [DOI:10.1016/S0006-3223(99)00138-9]
11. Buhot M-C, Martin S, Segu L. Role of serotonin in memory impairment. Ann Med 2000;32(3):210-21. [DOI:10.3109/07853890008998828]
12. Jones H, Cummings A, Setchell K, Lawson A. A study of the disposition of alpha‐methyldopa in newborn infants following its administration to the mother for the treatment of hypertension during pregnancy. Br J Clin Pharmacol 1979;8(5):433-40. [DOI:10.1111/j.1365-2125.1979.tb01022.x]
13. Solomon S, Hotchkiss E, Saravay SM, Bayer C, Ramsey P, Blum RS. Impairment of memory function by antihypertensive medication. Arch Gen Psychiatry 1983;40(10):1109-12. [DOI:10.1001/archpsyc.1983.01790090071011]
14. Hosseini-Sharifabad A, Rabbani M, Sharifzadeh M, Bagheri N. Acute and chronic tramadol administration impair spatial memory in rat. Res Pharm Sci 2016;11(1):49.
15. Rutten K, Lieben C, Smits L, Blokland A. The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology 2007;192(2):275-82. [DOI:10.1007/s00213-006-0697-4]
16. Rutten K, Prickaerts J, Hendrix M, Van der Staay FJ, Şik A, Blokland A. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 2007;558(1):107-12. [DOI:10.1016/j.ejphar.2006.11.041]
17. Khakpai F, Nasehi M, Haeri-Rohani A, Eidi A, Zarrindast MR. Scopolamine induced memory impairment; possible involvement of NMDA receptor mechanisms of dorsal hippocampus and/or septum. Behav Brain Res 2012;231(1):1-10. [DOI:10.1016/j.bbr.2012.02.049]
18. Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, et al. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 2005;374(3):222-6. [DOI:10.1016/j.neulet.2004.10.063]
19. Loizou L. Uptake of monoamines into central neurones and the blood‐brain barrier in the infant rat. Br J Pharmacol 1970;40(4):800-13. [DOI:10.1111/j.1476-5381.1970.tb10656.x]
20. Boehm S, Huck S. α2-adrenoreceptor-mediated inhibition of acetylcholine-induced noradrenaline release from rat sympathetic neurons: An action at voltage-gated Ca 2+ channels. Neuroscience 1995;69(1):221-31. [DOI:10.1016/0306-4522(95)00235-B]
21. Tellez S, Colpaert F, Marien M. α 2-Adrenoceptor modulation of cortical acetylcholine release in vivo. Neuroscience 1999;89(4):1041-50. [DOI:10.1016/S0306-4522(98)00392-3]
22. Arnsten A, Cai JX, Goldman-Rakic PS. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 1988;8(11):4287-98.
23. Birnbaum S, Podell D, Arnsten A. Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats. Pharmacol Biochem Behav 2000;67(3):397-403. [DOI:10.1016/S0091-3057(00)00306-3]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Iranian Journal of Toxicology

Designed & Developed by : Yektaweb